# Analysis of Longitudinal Data

Lecturer: Jan Beyersmann

Time and Venue

 Lectures: Tuesday 10:15-12:00 am, Thursday 8:15-10:00Helmholtzstr. 18, Room 2.20 Exercise Wednesday: 4:00-5:45 pm, Helmholtzstr. 18, Room 120

General Informations:

 Prerequisites: The level of the course is roughly that of a first year's master coursein Mathematical Biometry. Some basic understanding of linear models is required. Exam: Written exam: 16th July, 12:15-14:15, H15Retake exam: 1st October, 10:00-12:00, Helmholtzstr. 18, Room 220

Contents:

Longitudinal data arise when the same individual/experiment unit is measured at a sequence of observation times. Such data combine aspects of both multivariate data and time series. Specific to longitudinal data is that the temporal interdependence implies a highly structured pattern and that typical data sets consist of a moderate to large number of short series, one from each subject. If time permits, we will also look at joint models for both longitudinal and time-to-event (survival) data.

Exercise Sheets:

 Sheet 1 Solution1.R Sheet 2 Solution2.R   (updated 12.05.13) Sheet 3 Solution3.R Sheet 4 Solution4.R Sheet 5 Solution5.R Sheet 6 Solution6.R Sheet 7 Solution7.R (updated (Line 72) 13.09.13) Sheet 8 Solution8.R Sheet 9 Solution9.R Sheet 10 Solution10.R Sheet 11 Solution11.R Sheet 12 Solution12.R

Literature:

P Diggle et al., Analysis of Longitudinal Data, Oxford University Press 2002
G Fitzmaurice et al., Applied Longitudinal Analysis, Wiley 2011
D Hedecker and R Gibbons, Longitudinal Data Analysis, Wiley 2006

# Aktuelles

Die Klausurergebnisse können persönlich bei Frau Renate Jäger (Raum 161, Helmholtzstr. 18 ) erfragt werden.

Klausureinsicht Nachklausur: 15.10.2013 um 10:00 Uhr (Raum 1.41)