Selective Enrichment of Slow-Growing Bacteria in a Metabolism-Wide CRISPRi Library with a TIMER Protein. Beuter D, Gomes-Filho JV, Randau L, Díaz-Pascual F, Drescher K, Link H. ACS Synth Biol. 2018 Nov 16. doi: 10.1021/acssynbio.8b00379.

 Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum. Özcan A, Pausch P, Linden A, Wulf A, Schühle K, Heider J, Urlaub H, Heimerl T, Bange GRandau L. Nat Microbiol. 2018 Nov 5. doi: 10.1038/s41564-018-0274-8.

 PAM identification by CRISPR-Cas effector complexes: diversified mechanisms and structures. Gleditzsch D, Pausch P, Müller-Esparza H, Özcan A, Guo X, Bange GRandau L. RNA Biol. 2018 Sep 18:1-14. doi: 10.1080/15476286.2018.1504546.

 CRISPR-Cas systems in multicellular cyanobacteria. Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM, Hess WR. RNA Biol. 2018 Aug 15:1-12. doi: 10.1080/15476286.2018.1493330.

 CRISPR-Based Technologies for Metabolic Engineering in Cyanobacteria. Behler J, Vijay D, Hess WR, Akhtar MK. Trends Biotechnol. 2018 Oct;36(10):996-1010. doi: 10.1016/j.tibtech.2018.05.011. Epub 2018 Jun 21. Review.

 Comprehensive search for accessory proteins encoded with archaeal and bacterial type III CRISPR-cas gene cassettes reveals 39 new cas gene families. Shah SA, Alkhnbashi OS, Behler J, Han W, She Q, Hess WR, Garrett RA, Backofen R. RNA Biol. 2018 Jun 19:1-13. doi: 10.1080/15476286.2018.1483685.

 Cas4 Facilitates PAM-Compatible Spacer Selection during CRISPR Adaptation. Kieper SN, Almendros C, Behler J, McKenzie RE, Nobrega FL, Haagsma AC, Vink JNA, Hess WR, Brouns SJJ. Cell Rep. 2018 Mar 27;22(13):3377-3384. doi: 10.1016/j.celrep.2018.02.103.

 Biochemical analysis of the Cas6-1 RNA endonuclease associated with the subtype I-D CRISPR-Cas system in Synechocystis sp. PCC 6803. Jesser R, Behler J, Benda C, Reimann V, Hess WRRNA Biol. 2018 Mar 26:1-11. doi: 10.1080/15476286.2018.1447742.

The host-encoded RNase E endonuclease as the crRNA maturation enzyme in a CRISPR-Cas subtype III-Bv system.Behler J, Sharma K, Reimann V, Wilde AUrlaub HHess WR.Nat Microbiol. 2018 Mar;3(3):367-377. doi: 10.1038/s41564-017-0103-5. Epub 2018 Feb 5.

 The independent loss model with ordered insertions for the evolution of CRISPR spacers. Baumdicker F, Huebner AMI, Pfaffelhuber P. Theor Popul Biol. 2018 Feb;119:72-82. doi: 10.1016/j.tpb.2017.11.001. Epub 2017 Nov 22.

 CRISPR tool puts RNA on the record. Beisel CLNature. 2018 Oct;562(7727):347-349. doi: 10.1038/d41586-018-06869-1.

 The Francisella novicida Cas12a is sensitive to the structure downstream of the terminal repeat in CRISPR arrays. Liao C, Slotkowski RA, Achmedov T, Beisel CL. RNA Biol. 2018 Oct 12:1-9. doi: 10.1080/15476286.2018.1526537.

 Advances in CRISPR Technologies for Microbial Strain Engineering. Alper HS, Beisel CL. Biotechnol J. 2018 Sep;13(9):e1800460. doi: 10.1002/biot.201800460.

 Genome Editing with CRISPR-Cas9 in Lactobacillus plantarum Revealed That Editing Outcomes Can Vary Across Strains and Between Methods. Leenay RT, Vento JM, Shah M, Martino ME, Leulier F, Beisel CL. Biotechnol J. 2018 Aug 29:e1700583. doi: 10.1002/biot.201700583.

 CRISPR RNA-Dependent Binding and Cleavage of Endogenous RNAs by the Campylobacter jejuni Cas9. Dugar G, Leenay RT, Eisenbart SK, Bischler T, Aul BU, Beisel CLSharma CMMol Cell. 2018 Mar 1;69(5):893-905.e7. doi: 10.1016/j.molcel.2018.01.032.

 A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs. Maxwell CS, Jacobsen T, Marshall R, Noireaux V, Beisel CL. Methods. 2018 Jul 1;143:48-57. doi: 10.1016/j.ymeth.2018.02.016. Epub 2018 Feb 24.

Rapid and Scalable Characterization of CRISPR Technologies Using an E. coli Cell-Free Transcription-Translation System. Marshall R, Maxwell CS, Collins SP, Jacobsen T, Luo ML, Begemann MB, Gray BN, January E, Singer A, He Y, Beisel CL, Noireaux V. Mol Cell. 2018 Jan 4;69(1):146-157.e3. doi: 10.1016/j.molcel.2017.12.007.

Repeat modularity as a beneficial property of multiple CRISPR-Cas systems. Yair Y, Gophna U. RNA Biol. 2018 Aug 10:1-3. doi: 10.1080/15476286.2018.1474073.

 The nuts and bolts of the Haloferax CRISPR-Cas system I-B. Maier LK, Stachler AE, Brendel J, Stoll B, Fischer S, Haas KA, Schwarz TS, Alkhnbashi OS, Sharma K, Urlaub HBackofen RGophna UMarchfelder A. RNA Biol. 2018 May 21:1-12. doi: 10.1080/15476286.2018.1460994.

Insights into RNA-processing pathways and associated RNA-degrading enzymes in Archaea. Clouet-d'Orval B, Batista M, Bouvier M, Quentin Y, Fichant G, Marchfelder A, Maier LK. FEMS Microbiol Rev. 2018 Sep 1;42(5):579-613. doi: 10.1093/femsre/fuy016.

Cross-cleavage activity of Cas6b in crRNA processing of two different CRISPR-Cas systems in Methanosarcina mazei Gö1. Nickel L, Ulbricht A, Alkhnbashi OS, Förstner KU, Cassidy L, Weidenbach K, Backofen RSchmitz RARNA Biol. 2018 Sep 13:1-12. doi: 10.1080/15476286.2018.1514234.

The CRISPR/Cas system in Neisseria meningitidis affects bacterial adhesion to human nasopharyngeal epithelial cells. Heidrich N, Hagmann A, Bauriedl S, Vogel J, Schoen C. RNA Biol. 2018 Jul 30:1-7. doi: 10.1080/15476286.2018.1486660

Primed CRISPR adaptation in Escherichia coli cells does not depend on conformational changes in the Cascade effector complex detected in Vitro. Krivoy A, Rutkauskas M, Kuznedelov K, Musharova O, Rouillon C, Severinov K, Seidel R. Nucleic Acids Res. 2018 May 4;46(8):4087-4098. doi: 10.1093/nar/gky219.

Stable maintenance of the rudivirus SIRV3 in a carrier state in Sulfolobus islandicus despite activation of the CRISPR-Cas immune response by a second virus SMV1. Papathanasiou P, Erdmann S, Leon-Sobrino C, Sharma K, Urlaub H, Garrett RA, Peng X. RNA Biol. 2018 Sep 13:1-9. doi: 10.1080/15476286.2018.1511674.