Molecular Iodine Fluorescence Using a Green Helium–Neon Laser

J. Charles Williamson*

Chemistry Department, Willamette University, Salem, Oregon 97301, United States

Supporting Information

ABSTRACT: Excitation of molecular iodine vapor with a green (543.4 nm) helium–neon laser produces a fluorescence spectrum that is well suited for the upper-level undergraduate physical chemistry laboratory. Application of standard evaluation techniques to the spectrum yields ground electronic-state molecular parameters in good agreement with literature values. The use of a green helium–neon laser provides advantages in data collection, data analysis, cost, and safety relative to other I₂ excitation sources.

KEYWORDS: Upper-Division Undergraduate, Physical Chemistry, Laboratory Instruction, Hands-On Learning/Manipulatives, Fluorescence Spectroscopy, Lasers, UV-VIS Spectroscopy, Quantum Chemistry

Experimental section

O vibronic spectroscopy between the \(^3\Pi^+\) B and \(^1\Sigma^+\) X states of molecular iodine vapor is a well-recognized experimental platform for reinforcing student comprehension of the quantum mechanical description of matter, and light–matter interactions.¹ ³ Potential well parameters for the B state are extracted from analysis of the absorption spectrum, and the X state is characterized using emission spectrum analysis. Suggested excitation sources for emission spectra in the I₂ experiment include the 546.1 nm line of a mercury lamp,⁴ the 632.8 nm (red) helium–neon laser,⁵ the 514.5 nm line of the argon ion laser,⁶ the 520.8 and 647.1 nm lines of the krypton ion laser,⁷ and 532.1 nm output from a frequency-doubled Nd:YAG laser.⁸,¹¹ Each of these excitation sources has strengths and drawbacks in its application to the undergraduate experiment. For example, the red HeNe I₂ fluorescence is relatively weak and includes overlapping emission from both the \(j' = 32, v' = 6\) and \(j' = 128, v' = 11\) states. Relaxation from these states leads to rotational doublets that can be used to determine the X-state rotational constant \(B'_{ex}\) and the equilibrium internuclear distance \(R'_{ex}\). In comparison, fluorescence following 514.5 nm Ar¹⁺ excitation is much stronger than red HeNe I₂ laser-induced fluorescence (LIF), but is generated by two transitions involving small \(j'\): P(13) 43-0 and R(15) 43-0. The resulting closely spaced doublet pairs are not useful for undergraduate rotational analysis, although students can analyze the anti-Stokes doublet from the weaker R(106) 28-0. This spectrum has a number of desirable properties with respect to the undergraduate I₂ fluorescence experiment. An overview of data collection and analysis is provided in the next two sections, followed by a summary of the advantages of using a green HeNe laser for I₂ excitation relative to other laser sources.

EXPERIMENTAL SECTION

Complete experimental details are presented in the Instructor Notes in the Supporting Information. Briefly, laser-induced fluorescence (LIF) was generated from iodine vapor using a 300 μW green HeNe laser (25-LGP-173, Melles Griot). Despite the low laser power, the orange fluorescence was bright enough to see by eye in a dimly lit room. The I₂ fluorescence was collected at 90° to laser incidence and detected using a monochromator with photomultiplier tube. Although the output power of the green HeNe remained constant to better than 1%, the I₂ fluorescence clearly cycled in intensity with a period of a few seconds at first and over several minutes once the laser had warmed up. Measured fluorescence peaks from the R(106) 28-0 excitation varied in intensity by 50% on a similar time scale, but all peaks remained present; the spectrum did not evolve through various emission band structures like Tellinghuisen has reported for green diode lasers.¹¹ Tellinghuisen proposed that different I₂ transitions are accessed over time by diode lasers because the
emission wavelength shifts from temperature-dependent changes in the diode laser cavity. Similar temperature-dependent effects are likely the source of the intensity fluctuations seen in the green HeNe I₂ fluorescence.

HAZARDS

Iodine is toxic and corrosive\(^{13}\) and is best handled in a fume hood. Most green HeNe lasers are Class IIIa/3R devices and caution should be exercised to avoid direct exposure of the eye to the emitted radiation.

RESULTS AND DISCUSSION

A low-resolution scan (1 nm) of the green HeNe I₂ LIF spectrum is shown in Figure 1A. At this resolution, the spectrum consists of a series of peaks corresponding to vibronic \(v'' = 28 \rightarrow v''\) transitions. The observed peak intensity distribution results from both Franck–Condon overlap and the overall instrument response as a function of wavelength. Missing peaks in the sequence correspond to poor Franck–Condon overlap and must be included in the numbering scheme (such as \(v'' = 4\)). Several small peaks seen to the blue of the laser line are due to anti-Stokes emission from other I₂ transitions accessed by the green HeNe laser.\(^{12}\)

Figure 1. (A) Green HeNe (543.4 nm) LIF spectrum of gas-phase molecular iodine at 1 nm resolution. The dominant series of emission peaks comes from \(f' = 107, v' = 28\) in the B state. Every fifth vibronic peak is numbered with its final value of \(v''\). Small peaks evident below 540 nm in the 6× magnification are anti-Stokes lines from other excited states. (B) The \(28 \rightarrow 1\) rotational doublet at two levels of resolution (0.25 and 0.034 nm). Smaller peaks in the higher-resolution scan arise from collision-induced changes in \(f\) prior to relaxation.

At higher resolution, each vibronic peak resolves into a rotational doublet (Figure 1B). Iodine follows the \(\Delta J = \pm 1\) selection rule, and molecules put into the \(f' = 107, v' = 28\) state by green HeNe laser excitation relax back to either \(f' = 106\) (net \(\Delta J = 0\)) or with a lower energy photon, \(f'' = 108\) (net \(\Delta J = \pm 2\)). Figure 2 presents an energy diagram for this process.

Determination of the X-state vibronic parameters from LIF data has been described in this Journal\(^{10,14}\) and details are presented in the accompanying Instructor Notes in the Supporting Information. Briefly, students calculate the energy difference \(\Delta \nu_0\) between the laser photon energy and the \(\Delta J = 0\) peak of each doublet. The coefficients of the vibrational term value polynomial \(C''(\nu'')\) are derived by fitting \(\Delta \nu_0\) as a function of \(\nu'' + 1/2\). Our students typically find that a third-order polynomial fit is statistically justified by the uncertainty and span of their data, and thus, they determine the parameters \(\nu_x\), \(\nu_y\), \(\nu_x'\), \(\nu_y'\), and \(\nu_x''\), \(\nu_y''\) in the expansion of \(C''(\nu'')\). Students obtain excellent agreement with the literature value for \(\nu_x'\) (Table 1), although their values are systematically low by \(\approx 1.3 \text{ cm}^{-1}\) due to an approximation in the analysis that is explained further in the Instructor Notes in the Supporting Information. Students obtain good agreement for \(\nu_x''\), \(\nu_y''\), and qualitative agreement for \(\nu_x'\), \(\nu_y'\). The spectroscopic dissociation energy of the X-state potential well, \(D_0^x\), is found from extrapolation of \(\Delta \nu_0\) to its maximum value. The value of \(D_0^x\) is typically overestimated by several hundred wavenumbers in this treatment (Table 1). This error is unavoidable given the number of vibronic peaks our students can observe.\(^{10}\) Better agreement would be found by measuring peak energies to higher \(\nu''\), but the sensitivity of our detection scheme cuts off at about 860 nm.

Figure 2. Representative rovibronic energy diagram for \(28 \rightarrow 1\) relaxation of molecular iodine following excitation of the R(106) 28-0 transition with a green HeNe laser. Before relaxation, some collisions transfer B-state population in \(f' = 107, v' = 28\) into other rotational levels, such as \(f' = 105\) or 109.
Rotational analysis of the I2 LIF spectrum has also been described before.6–8,10 As seen in Figure 2, the two transitions that lead to a particular rotational doublet originate from the same excited state, and thus, the energy difference Δv_J between the doublet peaks is equal to the spacing between the J'' and $J''+1$ levels in the X state. Ignoring centrifugal distortion, this spacing is

$$\Delta v_J = (4J'' + 6) \tilde{B}'(v'')$$

(1)

where to first order $\tilde{B}'(v'')$ is

$$\tilde{B}'(v'') = \tilde{B}_e - \alpha_v'' \left(v'' + \frac{1}{2} \right)$$

(2)

Equation 2 features the fundamental rotational constant \tilde{B}_e and the vibration–rotation coupling constant α_v''. If students analyze the $v' = 28 \rightarrow v'' = 1$ doublet spacing, the approximation that $\tilde{B}_e(v'') = 1$ introduces an error of only 1%.16 The equilibrium internuclear distance of the X state, R_0, is then calculated from \tilde{B}_e in the usual away, and students have the parameters they need to calculate an X-state Morse potential.10 Students can also determine α_v'' from the spectrum by measuring the spacings of many rotational doublets.6 Observant students may notice the presence of satellite peaks in a high-resolution doublet spectrum (Figure 1B). These peaks arise from collision-induced changes in the rotational state of excited I2 prior to relaxation to the X state;18 in this case, ΔJ equals integer multiples of two (Figure 2).

SUMMARY

Undergraduate analysis of the molecular iodine laser-induced fluorescence spectrum generated with a green HeNe laser yields X-state potential parameters with good accuracy. The fluorescence emission is stronger per milliwatt of excitation than that from other laser sources,12 including the argon ion, and the spectrum is dominated by emission from just a single rovibrational level in the B-state, $J = 107, v = 28$. This large value for J leads to widely spaced emission doublets suitable for rotational analysis. The accuracy to which the X-state electronic well depth can be determined depends on the number of observed vibronic peaks, and $v_{\text{max}}^\text{vib}$ with our instrumentation is 20 for red HeNe excitation, 36 for green HeNe excitation, and 42 for 514.5 nm Ar$^+$ excitation. The latter laser is a superior choice in this regard. However, the green HeNe laser is an order of magnitude less expensive than an argon ion laser, safer to operate, and produces a simpler emission spectrum with rotational structure that is easier to resolve.

ASSOCIATED CONTENT

Supporting Information

Notes for instructors; representative data; student guidelines for data analysis. This material is available via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

E-mail: jcwilla@willamette.edu.

ACKNOWLEDGMENT

The author thanks David Goodney and the Willamette University students enrolled in the Experimental Chemistry I course during 2009 and 2010. This work was supported by a Willamette University Atkinson Grant.

REFERENCES

