Dr. Tamara Merz

Dr. Tamara Merz is a postdoctoral research fellow working in the Institute of Anesthesiological Pathophysiology and Process Engineering (Head: Prof. Dr. Peter Radermacher). Her research interest is the role of the endogenously produced gaseous mediator hydrogen sulfide (H2S) in the context of stress/trauma and circulatory shock.

Circulatory shock is characterized by the failure of the circulatory system to meet the requirements of oxygen and energy substrates of the organism, leading to inadequate cellular oxygen utilization and multiple organ failure. The reduced oxygen utilization leads to a metabolic switch from mitochondrial oxidative phosphorylation to anaerobic glycolysis (Warburg effect). Hyperglycemia is an essential survival response, however it can be associated with higher mortality related to increased oxidative stress and mitochondrial damage. H2S is involved in both glucose regulation and mitochondrial respiration and it can have anti-oxidative and anti-inflammatory effects. The maintenance of H2S availability might thus attenuate shock-related metabolic dysregulation. Exogenous H2S administration is a promising therapeutic option, however due to its narrow therapeutic window, further investigation is warranted. The preservation or upregulation of the endogenous H2S enzymes could represent an alternative therapeutic strategy.

Physiological and psychological trauma/stress share a plethora of biological characteristics. Thus, another research focus (in collaboration with the Clinic of Psychosomatic Medicine and Psychotherapy) is the recently identified interaction of H2S with oxytocin (OT): OT is a known player in psychological trauma and also involved in glucose metabolism regulation. Glucocorticoids (GCs) play a role in glucose metabolism and psychological trauma as well and seem to interact with the H2S and OT system (further research in collaboration with the Institute of Comparative Molecular Endocrinology). In pre-clinical and clinical studies, the investigation of the interaction of H2S, OT and GCs during psychological and physiological stress might help to identify novel therapeutic strategies.