M.Sc. Joschua Conrad

Joschua Conrad received the B.Eng. degree at Baden-Wuerttemberg Cooperative State University (DHBW) Stuttgart in 2016. In his studies and work at Eisenmann SE in Böblingen and Stuttgart, he designed object-orientated software for applications with real-time requirements in automation. During his master studies, he worked at the Institute of Microelectronics at Ulm University and developed a high SNDR filter and a high SNDR oscillator using PCBs and developed software solutions for requirements engineering at Gigatronik GmbH in Ulm. He finished his master thesis in 2019 at the Institute of Microelectronics with the topic "Design of a Ring Amplifier based Sigma Delta Modulator".

He now works under the supervision of Prof. Dr.-Ing. Maurits Ortmanns in the field of "Machine Learning".


Student Theses

[mt] = Masterarbeit, [rp] = Bachelorarbeit

Publications

2024

9.
Conrad, J.; Wilhelmstätter, S.; Asthana, R.; Belagiannis, V.; Ortmanns, M.
Differentiable Cost Model for Neural-Network Accelerator Regarding Memory Hierarchy
IEEE Transactions on Circuits and Systems I: Regular Papers ( Early Access )
October 2024
DOI:10.1109/TCSI.2024.3476534
8.
Conrad, J.; Kauffman, J. G.; Wilhelmstätter, S.; Asthana, R.; Belagiannis, V.; Ortmanns, M.
Confidence Estimation and Boosting for Dynamic-Comparator Transient-Noise Analysis
22nd IEEE Interregional NEWCAS Conference (NEWCAS)
September 2024
DOI:10.1109/NewCAS58973.2024.10666354
7.
Wilhelmstätter, S.; Conrad, J.; Upadhyaya, D.; Polian, I.; Ortmanns, M.
Enabling Power Side-Channel Attack Simulation on Mixed-Signal Neural Network Accelerators
IEEE International Conference on Omni-Layer Intelligent Systems (COINS), London, UK
July 2024
6.
Kässer, P.; Kaltenstadler, S.; Conrad, J.; Wagner, J.; Ismail, O.; Ortmanns, M.
Stability Prediction of Δ∑ Modulators using Artificial Neural Networks
IEEE International Symposium on Circuits and Systems (ISCAS), Singapore
May 2024
DOI:10.1109/ISCAS58744.2024.10557868
5.
Conrad, J.; Wilhelmstätter, S.; Asthana, R.; Belagiannis, V.; Ortmanns, M.
Too-Hot-to-Handle: Insights into Temperature and Noise Hyperparameters for Differentiable Neural-Architecture-Searches
6th IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Abu-Dhabi, UAE
April 2024
DOI:10.1109/AICAS59952.2024.10595971
4.
Wilhelmstätter, S.; Conrad, J.; Upadhyaya, D.; Polian, I.; Ortmanns, M.
Attacking a Joint Protection Scheme for Deep Neural Network Hardware Accelerators and Models
6th IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS), Abu Dhabi, UAE
April 2024
DOI:10.1109/AICAS59952.2024.10595935
3.
Asthana, R.; Conrad, J.; Dawoud, Y.; Ortmanns, M.; Belagiannis, V.
Multi-conditioned Graph Diffusion for Neural Architecture Search
Transactions on Machine Learning Research
March 2024
ISSN: 2835-8856
Weblink:https://openreview.net/forum?id=5VotySkajV

2021

2.
Conrad, J.; Jiang, B.; Kässer, P.; Belagiannis, V.; Ortmanns, M.
Nonlinearity Modeling for Mixed-Signal Inference Accelerators in Training Frameworks
28th IEEE International Conference on Electronics, Circuits, and Systems (ICECS), pp. 1-4
2021
DOI:10.1109/ICECS53924.2021.9665503

2020

1.
Conrad, J.; Vogelmann, P.; Mokhtar, M. A.; Ortmanns, M.
Design Approach for Ring Amplifiers
IEEE Transactions on Circuits and Systems I: Regular Papers
April 2020
DOI:10.1109/TCSI.2020.2986553