Physikalische Chemie II
Wintersemester 2017/18
Ort: Universität Ost, 025 H1 / H2
Zeit: Mittwoch, 8:00 - 10:00 Uhr und Donnerstag 10:00 - 12:00 Uhr
Beginn: 18.10.2017
Beschreibung:
Die Vorlesung Physikalische Chemie-II beschäftigt sich mit den Themen Quantenmechanik und Spektroskopie. Im ersten Teil, der Quantenmechanik, wird zunächst auf die historische Entwicklung eingegangen. Daraufhin wird der Welle-Teilchen-Dualismus besprochen sowie unterschiedliche Atommodelle. Dies bildet dann die Grundlage für die Behandlung einfacher quantenmechanischer Systeme (z.B. Teilchen im Kasten, harmonischer Oszillator, Wasserstoffatom). Abschließend werden Drehimpulse, die Dirac-Gleichung, sowie die Bindungsverhältnisse in einfachen Molekülen behandelt.
Der zweite Teil der Vorlesung, Spektroskopie, beschäftigt sich mit den Grundlagen experimenteller Methoden zur spektroskopischen Auflösung von Strukturen und Reaktionen.
Literaturhinweise:
- P.W. Atkins und J. de Paula, "Physikalische Chemie", Wiley-VCH, Weinheim
- dazu das Arbeitsbuch, ebenfalls erhältlich bei Wiley-VCH
- G. Wedler, "Lehrbuch der Physikalischen Chemie", Wiley-VCH, Weinheim
- Engel/Reid, "Physical Chemistry", Pearson (Deutsch/Englisch)
Vorraussetzung zur Bestehung des Moduls:
- Klausur 1 (Abschlußklausur) Zeit und Ort werden noch bekanntgegeben
- Klausur 2 (Nachklausur) Zeit und Ort werden noch bekanntgegeben
- Die Klausuren sind "offen"
- Pflichtteilnahme am Seminar
Solar Energy Conversion: Fundamentals
Wintersemester 2017/18
Ort: Universität West 45.2.102
Tag: Dienstag
Zeit: 14:00 - 16:00 Uhr
Beginn: 24.10.2017 (Vorlesung beginnt erst in der 2. Vorlesungswoche)
Course Description:
The course makes familiar with the fundamental principles of quantum solar energy conversion by introducing the following topics: solar energy conversion schemes, fundamentals of photophysics and photochemistry of photoactive materials, methods for characterization of photoactive materials, fundamental concepts of photo(electro)catalysis and solar cells.
Prerequisite:
Basic modules of Physical Chemistry
Recommended Literature:
R. Memming, Semiconductor Electrochemistry; Wiley-VCH: Weinheim, 2001.
R. van de Krol, M. Grätzel (Eds.) Photoelectrochemical Hydrogen Production; Springer, 2011.
H. Kisch, Semiconductor Photocatalysis: Principles and Applications, Wiley-VCH: Weinheim, 2015.P. Würfel, Physics of Solar Cells, Wiley-VCH: Weinheim, 2009.
A. Smets, K.Jäger, O. Isabella, R. van Swaaij, M. Zeman, Solar Energy: The physics and engineering of photovoltaic conversion, technologies and systems, UIT, 2015.
Multiscale Modeling in Energy Research
Wintersemester 2017/18
Ort: Universität West 47.2.102
Tag: Montag
Zeit: 12:00 - 14:00 Uhr
Beginn: 16.10.2017
Course Description:
This course will provide a basic understanding of various theoretical methods that can be used for atomistic simulations of energy-related systems. In this course, you will learn how to apply and combine different modelling methods to study and understand the structures, properties, and processes relevant for energy-related systems. The course will begin by describing the fundamentals of electrochemistry. Next, we will focus on the multiscale modelling ranging from atomistic to continuum scales. Different methods of modelling and simulation for different time and length scales such as density-functional theory, molecular dynamics, Monte Carlo simulations, hybrid quantum mechanics/molecular mechanics, and coarse graining will be discussed. We will describe the theoretical background and mathematical formulation of these methods. Through examples, we will show how these methods can be used for the simulation of energy-related systems.
Prerequisite:
Quantum Mechanics or Chemistry, Condensed Matter or Solid State Physics and Statistical Mechanics, or permission of the instructors. Expertise in computation and numerics is not required.
Seminar:
Besides the lecture, there will be a seminar presentation and discussion on various topics related to the multiscale modelling.
Recommended Literatures:
1. Modeling and Simulation of Heterogeneous Catalytic Reactions: From the Molecular Process to the Technical System, Editor: Olaf Deutschmann, ISBN 978-3-527-32120-9 - Wiley-VCH, Weinheim (2011).
2. Introduction to Monte Carlo Methods. Daan Frenkel, NIC Series, Vol. 23, ISBN 3-00-012641-4, pp. 29-60, (2004).
3. Combined Quantum Mechanical and Molecular Mechanical Methods, Edited by Jiali Gao and Mark A. Thompson, American Chemical Society (1999).
4. Electronic Structure, Basic Theory and Practical Methods, Richard M. Martin, Cambirdge University Press, Cambridge, (2004).
Electrochemistry
Wintersemester 2017/18
Ort: Universität West 47.2.101
Tag: Montag
Zeit: 10:00 - 12:00 Uhr
Beginn: 16.10.2017
Course Description:
The lecture "Introduction to Electrochemistry" is intended to illustrate the fundamental aspects of electrochemistry, which are involved in electrochemistry, the design of aqueous solutions as well as of ionic liquids, the electrochemical nano structuring of surface und ultimately the structure-activity relationships in electrocatalysis, Here, the classical electrochemical techniques, e.g. cyclic voltammetry, impedance spectroscopy, as well as scanning tunneling microscopy (STM) for high-resolution in-situ structural investigations will be introduced. An insight into the theoretical models for describing elementary electrochemical processes or general electrochemical systems is given. Following the experimental and theoretical fundamentals of electrochemistry , reference is made to applications in the industry containing selected examples.