Publikationen von Professor Dr. Bernhardt

2021

100.
Lang, S. M.; Zimmermann, N.; Bernhardt, T. M.; Barnett, R. N.; Yoon, B.; Landman, U.
Size, stoichiometry, dimensionality, and Ca doping of manganese oxide-based water oxidation clusters: An oxyl/hydroxy mechanism for oxygen–oxygen coupling
The Journal of Physical Chemistry Letters, 12 (22) :5248-5255
2021
DOI:10.1021/acs.jpclett.1c01299

2020

99.
Zimmermann, N.; Bernhardt, T. M.; Bakker, J. M.; Barnett, R. N.; Landman, U.; Lang, S. M.
Infrared Spectroscopy of Gas-Phase MnxOy(CO2)z+ Complexes
J. Phys. Chem. A, 124 (8) :1561-1566
2020
DOI:10.1021/acs.jpca.9b11258
98.
Mravak, A.; Krstic, M.; Lang, S. M.; Bernhardt, T. M.; Bonačić-Koutecký, V.
Intrazeolite CO Methanation by Small Ruthenium Carbonyl Complexes: Translation from Free Clusters into the Cage
Chem. Cat. Chem., 12 (15) :3857-3862
2020
DOI:https://doi.org/10.1002/cctc.202000716
97.
Lang, S. M.; Bernhardt, T. M.; Bakker, J. M.; Barnett, R. N.; Landman, U.
Energetic Stabilization of Carboxylic Acid Conformers by Manganese Atoms and Clusters
J. Phys. Chem. A, 124 (24) :4990-4997
2020
DOI:10.1021/acs.jpca.0c03315

2019

96.
Mauthe, S.; Fleischer, I.; Bernhardt, T. M.; Lang, S. M.; Barnett, R. N.; Landman, U.
A Gas-Phase CanMn4−nO4+ Cluster Model for the Oxygen-Evolving Complex of Photosystem II
Angew. Chem. Int. Ed., 58 (25) :1433-7851
2019
DOI:https://doi.org/10.1002/anie.201903738
95.
Lang, S. M.; Bernhardt, T. M.; Bakker, J. M.; Yoon, B.; Landman, U.
Co-adsorption of O₂ and C₂H₄ on a free gold dimer probed via infrared photodissociation spectroscopy
J. Am. Soc. Mass Spectrom, 30 (30) :1895
2019
DOI:10.1007/s13361-019-02259-7
94.
Zimmermann, N.; Bernhardt, T. M.; Bakker, J. M.; Landman, U.; Lang, S. M.
Infrared photodissociation spectroscopy of di-manganese oxide cluster cations
Phys. Chem. Chem. Phys., 21 (43) :23922-23930
2019
DOI:https://doi.org/10.1039/C9CP04586D
93.
Lang, S. M.; Bernhardt, T. M.; Bakker, J. M.; Yoon, B.; Landman, U.
Methanol C-O bond activation by free gold clusters probed via infrared photodissociation spectroscopy
Z. Phys. Chem., 233 :865-880
2019
DOI:https://doi.org/10.1515/zpch-2018-1368
92.
Lang, S. M.; Bernhardt, T. M.; Bakker, J. M.; Yoon, B.; Landman, U.
Selective C-H bond Activation of Ethane by Free Gold Clusters
Int. J. Mass Spectrom., 435 :241
2019
DOI:https://doi.org/10.1016/j.ijms.2018.10.034

2018

91.
Lang, S. M.; Bernhardt, T. M.; Bakker, J. M.; Yoon, B.; Landman, U.
The interaction of ethylene with free gold cluster cations: Infrared photodissociation spectroscopy combined with electronic and vibrational structure calculations
J. Phys.: Condens. Matter, 30 :504001
2018
DOI:https://doi.org/10.1088/1361-648X/aaeafd
90.
Lang, S. M.; Miyajima, K.; Bernhardt, T. M.; Mafuné, F.; Barnett, R. N.; Landman, U.
Thermal stability of iron–sulfur clusters
Phys. Chem. Chem. Phys., 20 (11) :7781-7790
2018
DOI:10.1039/C8CP00515J
89.
Jochmann, K.; Bernhardt, T. M.
The influence of metal cluster lattices on the screening of image potential state electrons on graphene
J. Chem. Phys., 149 :164706
2018
DOI:https://doi.org/10.1063/1.5052643
88.
Lang, S. M.; Bernhardt, T. M.
Decomposition of acetic acid mediated by free MnxOx+ (x = 3, 4) clusters
Int. J. Mass Spectrom., 433 :7-10
2018
DOI:https://doi.org/10.1016/j.ijms.2018.07.008

2017

87.
Lang, S. M.; Bernhardt, T. M.
Chemical reactivity and catalytic properties of binary gold clusters: Atom by atom tuning in a gas phase approach
In Nguyen, M. T. and Boggavarapu, K., Editor
Seite 325
Book Section
Herausgeber: Springer, Berlin
2017
325
DOI:10.1007/978-3-319-48918-6_10
86.
Lang, S. M.; Bernhardt, T. M.; Chernyy, V.; Bakker, J. M.; Barnett, R. N.; Landman, U.
Selective C−H Bond Cleavage in Methane by Small Gold Clusters
Angew. Chem. Int. Ed., 56 :13406-13410
2017
DOI:https://doi.org/10.1002/anie.201706009
85.
Vaida, M. E.; Bernhardt, T. M.
Tuning the ultrafast photodissociation dynamics of CH3Br on ultrathin MgO films by reducing the layer thickness to the 2D limit
Chem. Phys. Lett., 688 :106-111
2017
DOI:https://doi.org/10.1016/j.cplett.2017.09.019

2016

84.
Lang, S. M.; Bernhardt, T. M.; Kiawi, D. M.; Bakker, J. M.; Barnett, R. N.; Landman, U.
Cluster size and composition dependent water deprotonation by free manganese oxide clusters
Phys. Chem. Chem. Phys., 18 :15727-15737
2016
DOI:https://doi.org/10.1039/C6CP00779A
83.
Heim, H. C.; Bernhardt, T. M.; Lang, S. M.; Barnett, R. N.; Landman, U.
Interaction of Iron–Sulfur Clusters with N2: Biomimetic Systems in the Gas Phase
J. Phys. Chem. C, 120 (23) :12549-12558
2016
DOI:10.1021/acs.jpcc.6b02821

2015

82.
Lang, S. M.; Fleischer, I.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Low temperature CO oxidation catalyzed by free palladium clusters: Similarities and differences to Pd surfaces and supported particles
ACS Catalysis, 5 :2275-2289
2015
DOI:https://doi.org/10.1021/cs5016222
81.
Heim, H. C.; Bernhardt, T. M.; Lang, S. M.
The challenge of generating iron-sulfur clusters
Int. J. Mass Spectrom., 387 :56-59
2015
DOI:https://doi.org/10.1016/j.ijms.2015.07.009
80.
Lang, S. M.; Bernhardt, T. M.; Kiawi, D. M.; Bakker, J. M.; Barnett, R. N.; Landman, U.
The interaction of water with free Mn4O4+ clusters: Deprotonation and adsorption-induced structural transformations
Angew. Chem. Int. Ed., 54 :15113-15117
2015
DOI:https://doi.org/10.1002/anie.201506294
79.
Lang, S. M.; Fleischer, I.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Water Deprotonation via Oxo-Bridge Hydroxylation and 18O‑Exchange in Free Tetra-Manganese Oxide Clusters
J. Phys. Chem. C, 119 :10881-1887
2015
DOI:https://doi.org/10.1021/jp5106532

2014

78.
Lang, S. M.; Bernhardt, T. M.; Krstic, M.; Bonačić-Koutecký, V.
Water activation by small free ruthenium oxide clusters
Phys. Chem. Chem. Phys., 16 (48) :26578-26583
2014
DOI:10.1039/C4CP02366H
77.
Lang, S. M.; Bernhardt, T. M.; Krstic, M.; Bonačić-Koutecký, V.
The Origin of the Selectivity and Activity of Ruthenium-Cluster Catalysts for Fuel-Cell Feed-Gas Purification: A Gas-Phase Approach
Angew. Chem. Int. Ed., 53 :5467-5471
2014
DOI:https://doi.org/10.1002/anie.201310134
76.
Vaida, M. E.; Bernhardt, T. M.
Surface-Aligned Femtochemistry: Molecular Reaction Dynamics on Oxide Surfaces
In de Nalda, R. and Bañares, L., Editor aus Springer Series in Chemical Physics
Seite 231-262
Book Section
Herausgeber: Springer-Verlag, Berlin
2014
231-262
DOI:https://doi.org/10.1007/978-3-319-02051-8_10
75.
Lang, S. M.; Fleischer, I.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Size-dependent self-limiting oxidation of free palladium clusters
J. Phys. Chem. A, 118 :8572-8582
2014
DOI:https://doi.org/10.1021/jp502736p
74.
Lang, S. M.; Förtig, S. U.; Bernhardt, T. M.; Krstic, M.; Bonačić-Koutecký, V.
Gas phase synthesis and structure of Wade-type ruthenium carbonyl and hydrido carbonyl clusters
J. Phys. Chem. A, 118 :8356−8359
2014
DOI:https://doi.org/10.1021/jp501242c

2013

73.
Lang, S. M.; Frank, A.; Bernhardt, T. M.
Activation and Catalytic Dehydrogenation of Methane on Small Pdx+ and PdxO+ Clusters
J. Phys. Chem. C, 117 :9791-9800
2013
DOI:https://doi.org/10.1021/jp312852r
72.
Lang, S. M.; Frank, A.; Bernhardt, T. M.
Comparison of methane activation and catalytic ethylene formation on free gold and palladium dimer cations: product binding determines the catalytic turnover
Cat. Sci. Technol., 3 :2926-2933
2013
DOI:https://doi.org/10.1039/C3CY00286A
71.
Lang, S. M.; Frank, A.; Bernhardt, T. M.
Composition and size dependent methane dehydrogenation on binary gold–palladium clusters
Int. J. Mass Spectrom., 354-355 :365-371
2013
DOI:https://doi.org/10.1016/j.ijms.2013.07.014
70.
Fleischer, I.; Popolan, D. M.; Krstic, M.; Bonačić-Koutecký, V.; Bernhardt, T. M.
Composition dependent selectivity in the coadsorption of H2O and CO on pure and binary silver–gold clusters
Chem. Phys. Lett., 565 :74-79
2013
DOI:https://doi.org/10.1016/j.cplett.2013.02.013
69.
Lang, S. M.; Fleischer, I.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Dimensionality Dependent Water Splitting Mechanisms on Free Manganese Oxide Clusters
Nano Lett., 13 :5549-5555
2013
DOI:https://doi.org/10.1021/nl4031456
68.
Lang, S. M.; Bernhardt, T. M.
GAS PHASE MODEL SYSTEMS FOR CATALYSIS
Bunsenmagazin (06) :283-289
2013
67.
Lang, S. M.; Frank, A.; Fleischer, I.; Bernhardt, T. M.
Is Gold Actor or Spectator in the Reaction of Small AunPdm+ clusters with O2?
Eur. Phys. J. D, 67 :19
2013
DOI:https://doi.org/10.1140/epjd/e2012-30623-1

2012

66.
Vaida, M. E.; Bernhardt, T. M.
Surface-aligned femtochemistry: Photoinduced reaction dynamics of CH3I and CH3Br on MgO(100)
Faraday Discuss., 157 :437-449
2012
DOI:https://doi.org/10.1039/C2FD20104F
65.
Bonačić-Koutecký, V.; Bernhardt, T. M.
Structure and reactivity of small particles: From clusters to aerosols
Phys. Chem. Chem. Phys., 14 :9252
2012
DOI:https://doi.org/10.1039/C2CP90066A
64.
Lang, S. M.; Schnabel, T.; Bernhardt, T. M.
Reactions of Carbon Monoxide with Free Palladium Oxide Clusters: Strongly Size Dependent Competition Between Adsorption and Combustion
Phys. Chem. Chem. Phys., 14 :9364-9370
2012
DOI:https://doi.org/10.1039/C2CP23976K
63.
Lang, S. M.; Fleischer, I.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Pd6O4+: An Oxidation Resistant yet Highly Catalytically Active Nano-Oxide Cluster
J. Am. Chem. Soc., 134 :20654-20659
2012
DOI:https://doi.org/10.1021/ja308189w
62.
Lang, S. M.; Bernhardt, T. M.
Gas phase metal cluster model systems for heterogeneous catalysis
Phys. Chem. Chem. Phys., 14 :9255-9269
2012
DOI:https://doi.org/10.1039/C2CP40660H

2011

61.
Popolan, D. M.; Bernhardt, T. M.
Communication: CO oxidation by silver and gold cluster cations: Identification of different active oxygen species
J. Chem. Phys., 134 (9) :091102
2011
DOI:10.1063/1.3563631
60.
Vaida, M. E.; Tchitnga, R.; Bernhardt, T. M.
Femtosecond Time-Resolved Photodissociation Dynamics of Methyl Halide Molecules on Ultrathin Gold Films
Beilstein J. Nanotechnol., 2 :618-627
2011
DOI:https://doi.org/10.3762/bjnano.2.65
59.
Vaida, M. E.; Bernhardt, T. M.
Femtosecond Two Photon Photoemission Spectroscopy of Methyl Iodide Adsorbed on a Gold Surface
AIP Conf. Proc., 1387 :146-154
2011
DOI:https://doi.org/10.1063/1.3647066
58.
Popolan, D. M.; Bernhardt, T. M.
Interaction of gold and silver cluster cations with CH3Br: thermal and photoinduced reaction pathways
Eur. Phys. J. D, 63 :251
2011
DOI:https://doi.org/10.1140/epjd/e2010-10588-9
57.
Lang, S. M.; Bernhardt, T. M.
Methane Activation and Partial Oxidation on Free Gold and Palladium Clusters: Mechanistic Insights into Cooperative and Highly Selective Cluster Catalysis
Faraday Disc., 152 :337-351
2011
DOI:https://doi.org/10.1039/C1FD00025J
56.
Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Temperature-tuneable selective methane catalysis on Au2+: From cryogenic partial oxidation yielding formaldehyde to cold ethylene production
J. Phys. Chem. C, 115 :6788
2011
DOI:https://doi.org/10.1021/jp200160r
55.
Popolan, D. M.; Nößler, M.; Mitrić, R.; Bernhardt, T. M.; Bonačić-Koutecký, V.
Tuning Cluster Reactivity by Charge State and Composition: Experimental and Theoretical Investigation of CO Binding Energies to AgnAum+/− (n + m = 3)
J. Phys. Chem. A, 115 :951
2011
DOI:https://doi.org/10.1021/jp106884p

2010

54.
Vaida, M. E.; Bernhardt, T. M.; Barth, C.; Esch, F.; Heiz, U.; Landman, U.
Ultrathin Magnesia Films as Support for Molecules and Metal Clusters: Tuning Reactivity by Thickness and Composition
Phys. Status Solidi B, 247 :1001
2010
DOI:https://doi.org/10.1002/pssb.200945579
53.
Vaida, M. E.; Bernhardt, T. M.
Surface-aligned femtochemistry: Real-time dynamics of photoinduced I2 formation from CD3I on MgO(100)
ChemPhysChem, 11 :804-807
2010
DOI:https://doi.org/10.1002/cphc.200900920
52.
Vaida, M. E.; Bernhardt, T. M.
Surface pump-probe femtosecond-laser mass spectrometry: Time-, mass-, and velocity-resolved detection of surface reaction dynamics
Rev. Sci. Instrum., 81 :104103
2010
DOI:https://doi.org/10.1063/1.3488098
51.
Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Size dependent binding energies of methane to small gold clusters
Chem. Phys. Chem., 11 :1570
2010
DOI:https://doi.org/10.1002/cphc.200900844
50.
Vaida, M. E.; Gleitsmann, T.; Tchitnga, R.; Bernhardt, T. M.
Femtosecond-Laser Photoemission and Photodesorption from Magnesia Supported Gold Clusters
Phys. Status Solidi B, 247 :1139-1146
2010
DOI:https://doi.org/10.1002/pssb.200945518
49.
Popolan, D. M.; Nößler, M.; Mitrić, R.; Bernhardt, T. M.; Bonačić-Koutecký, V.
Composition dependent adsorption of multiple CO molecules on binary silver-gold clusters AgnAum+ (n + m = 5): Theory and experiment
Phys. Chem. Chem. Phys., 12 :7865
2010
DOI:https://doi.org/10.1039/B924022E
48.
Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Landman, U.
Methane Activation and Catalytic Ethylene Formation on Free Au2+
Angew. Chem. Int. Ed., 49 :980-983
2010
DOI:https://doi.org/10.1002/anie.200905643

2009

47.
Popolan, D.; Bernhardt, T. M.
Formation and femtosecond photodissociation of Aun+ and Agn+ complexes with benzene and carbon monoxide
Chem. Phys. Lett., 470 :44
2009
DOI:https://doi.org/10.1016/j.cplett.2009.01.036
46.
Lang, S. M.; Bernhardt, T. M.
Reactions of free gold cluster cations with H2O, CH3Cl, and mixtures thereof
Int. J. Mass Spectrom., 286 :39-41
2009
DOI:https://doi.org/10.1016/j.ijms.2009.06.005
45.
Lang, S. M.; Bernhardt, T. M.; Barnett, R. N.; Yoon, B.; Landman, U.
Hydrogen promoted oxygen activation by free gold cluster cations
J. Am. Chem. Soc., 131 :8939-8951
2009
DOI:https://doi.org/10.1021/ja9022368
44.
Lang, S. M.; Bernhardt, T. M.
Reactions of small gold cluster cations with propylene, methane, and hydrogen: Permissive and competitive coadsorption effects
Eur. J. Phys. D, 52 :139-142
2009
DOI:https://doi.org/10.1140/epjd/e2009-00070-4
43.
Vaida, M. E.; Gleitsmann, T.; Tchitnga, R.; Bernhardt, T. M.
Femtosecond-Laser Photoemission Spectroscopy of Mo(100) Covered by Ultrathin MgO(100) Films of Variable Thickness
J. Phys. Chem. C, 113 :10264-10268
2009
DOI:https://doi.org/10.1021/jp902695h
42.
Lang, S. M.; Bernhardt, T. M.
Cooperative and competitive coadsorption of H2, O2, and N2 on Aux+(x=3,5)
J. Chem. Phys., 131 :024310
2009
DOI:https://doi.org/10.1063/1.3168396
41.
Bernhardt, T. M.; Hagen, J.; Lang, S. M.; Popolan, D. M.; Socaciu-Siebert, L.; Wöste, L.
Binding Energies of O2 and CO to Small Gold, Silver, and Binary Silver-Gold Cluster Anions from Temperature Dependent Reaction Kinetics Measurements
J. Phys. Chem. A, 113 :2724-2733
2009
DOI:https://doi.org/10.1021/jp810055q
40.
Vaida, M. E.; Bernhardt, T. M.
Adsorption and Photodissociation Dynamics of Methyl Iodide on Magnesia Supported Gold Nano-Particles
Eur. J. Phys. D, 52 :119-122
2009
DOI:https://doi.org/10.1140/epjd/e2009-00064-2

2008

39.
Vaida, M. E.; Hindelang, P. E.; Bernhardt, T. M.
Femtosecond Real-Time Probing of Transition State Dynamics in a Surface Photoreaction: Methyl Desorption from CH3I on MgO(100)
J. Chem. Phys., 129 :011105
2008
DOI:https://doi.org/10.1063/1.2953578

2007

38.
Lindinger, A.; Bonačić-Koutecký, V.; Mitrić, R.; Tannor, D.; Koch, C. P.; Engel, V.; Bernhardt, T. M.; Jortner, J.; Mirabal, A.; Wöste, L.
Analysis and control of small isolated molecular systems
In Kühn, Oliver and Wöste, Ludger, Editor
Seite 25-152
Book Section
Herausgeber: Springer Berlin Heidelberg, Berlin, Heidelberg
2007
25-152
DOI:10.1007/978-3-540-68038-3_2
37.
Hagen, J.; Socaciu-Siebert, L. D.; Le Roux, J.; Popolan, D.; Vajda, S.; Bernhardt, T. M.; Wöste, L.
Charge transfer initiated nitroxyl chemistry on free silver clusters Ag2-5-: Size effects and magic complexes
Int. J. Mass Spectrom., 261 :152
2007
DOI:https://doi.org/10.1016/j.ijms.2006.08.008
36.
Bernhardt, T. M.; Heiz, U.; Landman, U.
Chemical and Catalytic Properties of Size-Selected Free and Deposited Clusters
In Heiz, U. and Landman, U., Editor
Seite 1-191
Book Section
Herausgeber: Springer-Verlag, Berlin
2007
1-191
DOI:https://doi.org/10.1007/978-3-540-32646-5_1
35.
Lang, S. M.; Popolan, D. M.; Bernhardt, T. M.
Chemical reactivity and catalytic properties of size-selected gas phase metal clusters
In Woodruff, P., Editor, Band 12 aus The chemical physics of solid surfaces
Seite 53-90
Book Section
Herausgeber: Elsevier, Amsterdam
2007
53-90
DOI:https://doi.org/10.1016/S1571-0785(07)12002-2
34.
Gleitsmann, T.; Vaida, M. E.; Bernhardt, T. M.; Bonačić-Koutecký, V.; Bürgel, C.; Kuznetsov, A. E.; Mitrić, R.
Mass-selected Ag3 clusters soft-landed on magnesia: Two photon photoemission and first-principles simulations
Eur. Phys. J. D, 45 :477-483
2007

2006

33.
Bonačić-Koutecký, V.; Mitrić, R.; Bernhardt, T. M.; Wöste, L.; Jortner, J.
Analysis and control of ultrafast dynamics in atomic clusters: Theory and Experiment
Adv. Chem. Phys., 132 :179
2006
32.
Gleitsmann, T.; Bernhardt, T. M.; Wöste, L.
Luminescence properties of femtosecond-laser-activated silver oxide nanoparticles embedded in a biopolymer matrix
Appl. Phys. A, 82 :125
2006
DOI:https://doi.org/10.1007/s00339-005-3372-4

2005

31.
Bernhardt, T. M.; Socaciu-Siebert, L. D.; Hagen, J.; Wöste, L.
Size and composition dependence in CO oxidation reaction on free gold, silver, and binary silver-gold cluster anions
Appl. Catal. A, 291 :170
2005
DOI:https://doi.org/10.1016/j.apcata.2005.02.041
30.
Socaciu-Siebert, L. D.; Hagen, J.; Le Roux, J.; Popolan, D.; Vajda, S.; Bernhardt, T. M.; Wöste, L.
Ultrafast nuclear dynamics induced by photodetachment of Ag2- and Ag2O2-: Oxygen desorption from a molecular silver surface
Phys. Chem. Chem. Phys., 7 :2706
2005
DOI:https://doi.org/10.1039/B506034F
29.
Stegemann, B.; Gleitsmann, T.; Bernhardt, T. M.
Verfahren zur optischen Datenspeicherung in Schichten aus Silberoxid mittels ultrakurzer Laserpulse
2005
28.
Bernhardt, T. M.
Gas-phase kinetics and catalytic reactions of small silver and gold clusters
International Journal of Mass Spectrometry, 243 (1) :1-29
2005
DOI:https://doi.org/10.1016/j.ijms.2004.12.015
27.
Bernhardt, T. M.; Hagen, J.; Socaciu-Siebert, L. D.; Mitrić, R.; Heidenreich, A.; Le Roux, J.; Popolan, D.; Vaida, M.; Wöste, L.; Bonačić-Koutecký, V.; Jortner, J.
Femtosecond time-resolved geometry relaxation and ultrafast intramolecular energy redistribution in Ag2Au
Chem. Phys. Chem., 6 :243
2005
DOI:https://doi.org/10.1002/cphc.200400454
26.
Bernhardt, T. M.; Socaciu, L. D.; Hagen, J.; Popolan, D.; Le Roux, J.; Heiz, U.; Wöste, L.
Catalysis with small free noble metal clusters
In Jena, P. and Khanna, S. N. and Rao, B. K., Editor
Seite 1
Book Section
Herausgeber: World Scientific, Singapore
2005
1
DOI:https://doi.org/10.1002/chin.200552269

2004

25.
Hagen, J.; Socaciu, L. D.; Le Roux, J.; Popolan, D.; Bernhardt, T. M.; Wöste, L.; Mitrić, R.; Noack, H.; Bonačić-Koutecký, V.
Cooperative effects in the activation of molecular oxygen by anionic silver clusters
J. Am. Chem. Soc., 126 :3442
2004
DOI:https://doi.org/10.1021/ja038948r
24.
Gleitsmann, T.; Stegemann, B.; Bernhardt, T. M.
Femtosecond-laser-activated fluorescence from silver oxide nanoparticles
Appl. Phys. Lett., 84 :4050-4052
2004
DOI:https://doi.org/10.1063/1.1751613
23.
Socaciu, L. D.; Hagen, J.; Le Roux, J.; Popolan, D.; Bernhardt, T. M.; Wöste, L.; Vajda, S.
Strongly cluster size dependent reaction behavior of CO with O2 on free silver cluster anions
J. Chem. Phys., 120 :2078
2004
DOI:https://doi.org/10.1063/1.1644103
22.
Lindinger, A.; Hagen, J.; Socaciu, L. D.; Bernhardt, T. M.; Wöste, L.; Duft, D.; Leisner, T.
Time-resolved explosion dynamics of H2O droplets induced by femtosecond laser pulses
Appl. Opt., 43 :5263
2004
DOI:https://doi.org/10.1364/AO.43.005263

2003

21.
Socaciu, L. D.; Hagen, J.; Bernhardt, T. M.; Wöste, L.; Heiz, U.; Häkkinen, H.; Landman, U.
Catalytic CO oxidation by free Au2-: Experiment and theory
J. Am. Chem. Soc., 125 :10437-10445
2003
DOI:https://doi.org/10.1021/ja027926m
20.
Bernhardt, T. M.; Stegemann, B.; Kaiser, B.; Rademann, K.
Crystalline structures of Sb4 molecules in antimony thin films
Angew. Chem. Int. Ed., 42 :199
2003
DOI:https://doi.org/10.1002/anie.200390077
19.
Hagen, J.; Socaciu, L. D.; Heiz, U.; Bernhardt, T. M.; Wöste, L.
Size dependent reaction kinetics of small gold clusters with carbon monoxide: Influence of internal degrees of freedom and carbonyl complex stability
Eur. J. Phys. D, 24 :327
2003
DOI:https://doi.org/10.1140/epjd/e2003-00185-6

2002

18.
Hagen, J.; Socaciu, L. D.; Elijazyfer, M.; Heiz, U.; Bernhardt, T. M.; Wöste, L.
Coadsorption of CO and O2 on small free gold cluster anions at cryogenic temperatures: Model complexes for catalytic CO oxidation
Phys. Chem. Chem. Phys., 4 :1707
2002
DOI:https://doi.org/10.1039/B201236G
17.
Stegemann, B.; Bernhardt, T. M.; Kaiser, B.; Rademann, K.
STM investigation of surface alloy formation and thin film growth by Sb4 deposition on Au(111),
Surf. Sci., 511 :153
2002
DOI:https://doi.org/10.1016/S0039-6028(02)01556-X
16.
Bernhardt, T. M.; Kaiser, B.; Rademann, K.
Unimolecular decomposition of antimony and bismuth cluster ions studied by surface collision induced dissociation mass spectrometry
Phys. Chem. Chem. Phys., 4 :1192
2002
DOI:https://doi.org/10.1039/B110194C

2001

15.
Socaciu, L. D.; Hagen, J.; Heiz, U.; Bernhardt, T. M.; Leisner, T.; Wöste, L.
Reaction mechanism for the oxidation of free silver dimers
Chem. Phys. Lett., 340 :282
2001
DOI:https://doi.org/10.1016/S0009-2614(01)00447-X
14.
Paik, D. H.; Bernhardt, T. M.; Kim, N. J.; Zewail, A. H.
Femtochemistry of mass-selected negative-ion clusters of dioxygen: Charge-transfer and solvation dynamics
J. Chem. Phys., 115 :612
2001
DOI:https://doi.org/10.1063/1.1384549

1999

13.
Kaiser, B.; Bernhardt, T. M.; Stegemann, B.; Opitz, J.; Rademann, K.
Bimodal distribution in the fragmentation behavior of small antimony clusters Sbx+ (x=3-12) scattered from the surface of HOPG
Phys. Rev. Lett., 83 :2918
1999
12.
Zhong, D.; Bernhardt, T. M.; Zewail, A. H.
Femtosecond real-time probing of reactions. 24. Time, velocity and orientation mapping of the dynamics of dative bonding in bimolecular electron transfer reactions
J. Phys. Chem. A, 103 :10093-10117
1999
DOI:https://doi.org/10.1021/jp9919359
11.
Kaiser, B.; Bernhardt, T. M.; Kinne, M.; Rademann, K.; Heidenreich, A.
Formation, stability, and structures of antimony oxide cluster ions
J. Chem. Phys., 110 :1437
1999
DOI:https://doi.org/10.1063/1.478019
10.
Kaiser, B.; Bernhardt, T. M.; Stegemann, B.; Opitz, J.; Rademann, K.
Interaction of mass selected antimony clusters with HOPG
Nucl. Instrum. and Meth. in Phys. Res. B, 157 :155
1999
DOI:https://doi.org/10.1016/S0168-583X(99)00411-5

1998

9.
Kaiser, B.; Bernhardt, T. M.; Rademann, K.
Deposition of size-selected clusters at hyperthermal energies investigated by STM
Appl. Phys. A, 66 :S711
1998
DOI:https://doi.org/10.1007/s003390051227
8.
Zhong, D.; Diau, E. W.-G.; Bernhardt, T. M.; De Feyter, S.; Roberts, J. D.; Zewail, A. H.
Femtosecond dynamics of valence-bond isomers of azines: Transition states and conical intersections
Chem. Phys. Lett., 298 :129
1998
DOI:https://doi.org/10.1016/S0009-2614(98)01160-9
7.
Kaiser, B.; Bernhardt, T. M.; Kinne, M.; Rademann, K.
Formation of antimony oxide clusters in a molecular beam
Int. J. Mass Spectrom. Ion Proc., 177 :L5
1998
DOI:https://doi.org/10.1016/S1387-3806(98)14026-5
6.
Bernhardt, T. M.; Kaiser, B.; Rademann, K.
Formation of superperiodic patterns on highly oriented pyrolytic graphite by manipulation of nanosized graphite sheets with the STM tip
Surf. Sci., 408 :86
1998
DOI:https://doi.org/10.1016/S0039-6028(98)00152-6

1997

5.
Kinne, M.; Bernhardt, T. M.; Kaiser, B.; Rademann, K.
Formation and stability of antimony and bismuth oxide clusters: a mass spectrometric investigation
Int. J. Mass Spectrom. Ion Proc., 167/168 :161
1997
DOI:https://doi.org/10.1016/S0168-1176(97)00041-4
4.
Kinne, M.; Bernhardt, T. M.; Kaiser, B.; Rademann, K.
Formation of antimony oxide clustes by gas aggregation
Z. Phys. D, 40 :105
1997
DOI:https://doi.org/10.1007/s004600050169
3.
Bernhardt, T. M.; Kaiser, B.; Rademann, K.
Fragmentation of clusters induced by collision with a solid surface: comparison of antimony and bismuth cluster ions
Z. Phys. D, 40 :327
1997
DOI:https://doi.org/10.1007/s004600050219
2.
Kaiser, B.; Bernhardt, T. M.; Rademann, K.
Scattering and deposition of mass-selected antimony clusters
Nucl. Instrum. and Meth. in Phys. Res. B, 125 :223
1997
DOI:https://doi.org/10.1016/S0168-583X(96)00927-5

1996

1.
Bernhardt, T. M.; Kaiser, B.; Rademann, K.
Fragmentation of charged antimony clusters induced by collision with a solid surface
Z. Phys. Chem., 195 :273
1996
DOI:https://doi.org/10.1524/zpch.1996.195.Part_1_2.273