Evaluation of the EPR Effect in the CAM-Model by Molecular Imaging with MRI and PET Using 89Zr-Labeled HSA

Universität Ulm
Abstract

Mouse models are commonly used to study the biodistribution of novel radioligands, but alternative models corresponding to the 3Rs principles, such as the chorioallantoic membrane (CAM) model, are highly required. While there are promising data from the CAM model regarding target-specific radiolabeled compounds, its utility for assessing macromolecule biodistribution and analyzing the EPR effect remains to demonstrated. Using 89Zr-labeled human serum albumin, the accumulation of nontarget-specific macromolecules in CAM and mouse xenograft models was studied using PET and MRI. Therefore, the radioligand [89Zr]Zr-DFO-HSA was analyzed in both chicken embryos (n = 5) and SCID mice (n = 4), each with TZM-bl and PC-3 tumor entities. Dynamic PET and anatomical MRI, as well as ex vivo biodistribution analyses, were performed to assess ligand distribution over 24 h. Histological staining and autoradiography verified the intratumoral accumulation. The tumors were successfully visualized for CAM and mouse models by PET, and the albumin influx from the blood into the respective tumors did not differ significantly. The accumulation and retention of HSA in tumors due to the EPR effect was demonstrated for both models. These results highlight that the CAM model is a potential alternative to the mouse model for initial studies with novel radiolabeled macromolecules with respect to the 3Rs principles.

 

Hilbrig C, Löffler J, Fischer G, Scheidhauer E, Solbach C, Huber-Lang M, Beer AJ, Rasche V, Winter G. Evaluation of the EPR Effect in the CAM-Model by Molecular Imaging with MRI and PET Using 89Zr-Labeled HSA. Cancers (Basel). 2023 Feb 9;15(4):1126. doi: 10.3390/cancers15041126. PMID: 36831469;