D-89081 Ulm
Prof. Dr. Stefan
Wewers
Institutsdirektor
Institut für Algebra und Zahlentheorie
Helmholtzstraße 18, Raum E29
D-89081 Ulm
D-89081 Ulm
Sprechstunde im SS 2022
Es findet keine regelmäßige Sprechstunde statt. Termine werden nur nach vorheriger Vereinbarung per Email vergeben.
Forschung - Aktuelle Projekte
Quotient singularities and semistable reduction
(DFG priority program SPP1489)
- Computing L-functions and semistable reduction of superelliptic curves, with Irene Bouw, preprint, 2012. To appear in Glasgow Math. J.
- The functional equation for L-functions of hyperelliptic curves, with Irene Bouw und Michel Börner, preprint, 2015, to appear in Experimental Mathematics
- Another proof of the semistable reduction theorem, with Kai Arzdorf, preprint, 2012
- Semistable reduction of curves and computation of bad Euler factors of L-functions, with Irene Bouw, notes for a minicourse at ICERM
The lifting problem
- Cyclic extensions and the local lifting problem, with Andrew Obus. Annals of Math. 180 (2014), no. 1, 233-284
- Fiercely ramified cyclic extensions of p-adic fields with imperfect residue field. Manuscripta mathematica 143 (2014), no. 3-4, 445-472
- Wild ramification kinks, with Andrew Obus, Research in the Mathematical Sciences, (2016), 3:21
The nonabelian Chabauty method
- Explicit Chabauty-Kim theory for the thrice punctured line in depth two, with Ishai Dan-Cohen, Proc. London Math. Society 110 (2015), no. 1, 133-171
- Mixed Tate motives and the unit equation, with Ishai Dan-Cohen, preprint, 2013, to appear in Int. Math. Research Notices (Sage code: localanalytic.sage, Lip.sage)
- A nonabelian conjecture of Birch and Swinnerton-Dyer type for hyperbolic curves, with Minhyong Kim, Jennifer Balakrishnan and Ishai Dan-Cohen, preprint, 2012 (some Sage code related to this paper)
Vorträge
Mathematik Querbeet: Kurse für mathematisch begabte Schüler
- die Welt der Primzahlen, I: warum interessiert sich die NSA dafür? (18.12.2020)
- die Musik der Primzahlen, I: Der Primzahlsatz und die Zeta-Funktion (26.2.2021)
- die Musik der Primzahlen, II: die Riemannsche Vermutung (23.4.2021)
Betreute Vorlesungen
Wintersemester 2022/23
Algorithmische Algebra
Lineare Algebra 1
Sommersemester 2022
Wintersemester 2021/22
Sommersemester 2021
Forschungsfreisemester
Wintersemester 2020/21
Sommersemester 2020
Wintersemester 2019/20
Sommersemester 2019
Wintersemester 2018/19
Sommersemester 2018
Wintersemester 2017/18
Sommersemester 2017
Algorithmic Algebra & Number Theory