2013

471.
C. Busó-Rogero, E. Herrero, J. Bandlow, A. Comas-Vives and T. Jacob, "CO oxidation on stepped-Pt(111) under electrochemical conditions: insights from theory and experiment", Physical Chemistry Chemical Physics, vol. 15, no. 42, pp. 18671, 2013. Royal Society of Chemistry (RSC).
DOI:10.1039/c3cp53282h
Datei:https://doi.org/10.1039%2Fc3cp53282h
470.
W. Gao, J. E. Mueller, J. Anton, Q. Jiang and T. Jacob, "Das Wachstum von Nickelclustern an Graphen-Fehlstellen: eine theoretische Studie", Angewandte Chemie, vol. 125, no. 52, pp. 14487—14491, Nov. 2013. Wiley.
DOI:10.1002/ange.201305001
Datei:https://doi.org/10.1002%2Fange.201305001
469.
P. Raijput, A. Gupta, B. Detlefs, D. M. Kolb, S. Potdar and J. Zegenhagen, "Dealloying of CuxAu studied by hard X-ray photoelectron spectroscopy", J. Electron Spectroscopy and Related Phenomena, vol. 190, pp. 289-294, 2013.
468.
W. Wei and T. Jacob, "Electronic and optical properties of fluorinated graphene: A many-body perturbation theory study", Physical Review B, vol. 87, no. 11, pp. 115431, Mä. 2013. American Physical Society (APS).
DOI:10.1103/physrevb.87.115431
Datei:https://doi.org/10.1103%2Fphysrevb.87.115431
467.
T. Jacob, W. Wei, Y. Dai and B. Huang, "Enhanced Many-Body Effects in 2- and 1-Dimensional ZnO Structures: A Green’s Function Perturbation Theory Study", J. Chem. Phys., vol. 139, pp. 144703, 2013.
DOI:10.1063/1.4824078
Datei:pdf/fileadmin/website_uni_ulm/nawi.inst.080/publikationen/0099_Enhanced_Many_Body_Effects_JChemPhys_2013.pdf
466.
W. Wei, Y. Dai, B. Huang and T. Jacob, "Enhanced many-body effects in 2- and 1-dimensional ZnO structures: A Green\textquotesingles function perturbation theory study", The Journal of Chemical Physics, vol. 139, no. 14, pp. 144703, Okt. 2013. AIP Publishing.
DOI:10.1063/1.4824078
Datei:https://doi.org/10.1063%2F1.4824078
465.
W. Zheng, T. P. Cotter, P. Kaghazchi, T. Jacob, B. Frank, K. Schlichte, W. Zhang, D. S. Su, F. Schüth and R. Schlögl, "Experimental and Theoretical Investigation of Molybdenum Carbide and Nitride as Catalysts for Ammonia Decomposition", Journal of the American Chemical Society, vol. 135, no. 9, pp. 3458—3464, Feb. 2013. American Chemical Society (ACS).
DOI:10.1021/ja309734u
Datei:https://doi.org/10.1021%2Fja309734u
464.
P. Kaghazchi, D. S. Su, R. Schlögl, W. Zheng, T. P. Cotter, B. Frank, K. Schlichte, W. Zhang and F. Schüth, "Experimental and Theoretical Investigation of Molybdenum Carbide and Nitride as Catalysts for Ammonia Decomposition", J. Am. Chem. Soc., vol. 135 (9), pp. 3458 – 3464, 2013.
DOI:https://doi.org/10.1021/ja309734u
Datei:pdf/fileadmin/website_uni_ulm/nawi.inst.080/publikationen/0093_Molybdenum_Carbide_and_Nitride_JAmChemSoc_2013.pdf
463.
W. Wei, Y. Dai, B. Huang and T. Jacob, "Many-body effects in silicene, silicane, germanene and germanane", Physical Chemistry Chemical Physics, vol. 15, no. 22, pp. 8789, 2013. Royal Society of Chemistry (RSC).
DOI:10.1039/c3cp51078f
Datei:https://doi.org/10.1039%2Fc3cp51078f
462.
M. Landstorfer and T. Jacob, "Mathematical modeling of intercalation batteries at the cell level and beyond", Chemical Society Reviews, vol. 42, no. 8, pp. 3234, 2013. Royal Society of Chemistry (RSC).
DOI:10.1039/c2cs35050e
Datei:https://doi.org/10.1039%2Fc2cs35050e
461.
T. Jacob and M. Landstorfer, "Mathematical Modeling of Intercalation Batteries on Cell Level and Beyond", Chem. Soc. Rev., vol. 42(8), pp. 3234-3252, 2013.
Datei:pdf/fileadmin/website_uni_ulm/nawi.inst.080/publikationen/R4_Mathematical_Modeling_online_version.pdf
460.
J. E. Mueller, D. Fantauzzi and T. Jacob,Multiscale Modeling of Electrochemical Systems, Dez. 2013.
459.
W. Gao, J. E. Mueller, J. Anton, Q. Jiang and T. Jacob, "Nickel Cluster Growth on Defect Sites of Graphene: A Computational Study", Angewandte Chemie International Edition, vol. 52, no. 52, pp. 14237—14241, Nov. 2013. Wiley.
DOI:10.1002/anie.201305001
Datei:https://doi.org/10.1002%2Fanie.201305001
458.
W. Chen, Q. Shen, R. A. Bartynski, P. Kaghazchi and T. Jacob, "Reduction of Nitric Oxide by Acetylene on Ir Surfaces with Different Morphologies: Comparison with Reduction of NO by CO", Langmuir, vol. 29, no. 4, pp. 1113—1121, Jan. 2013. American Chemical Society (ACS).
DOI:10.1021/la3043878
Datei:https://doi.org/10.1021%2Fla3043878
457.
C. Köntje, D. M. Kolb and G. Jerkiewicz, "Roughening and Long-Range Nanopatterning of Au(111) through Potential Cycling in Aqueous Acidic Media", Langmuir, vol. 29, pp. 10272-10278, 2013.
456.
T. Zhu, E. J. M. Hensen, R. A. Santen, N. Tian, S. Sun, P. Kaghazchi and T. Jacob, "Roughening of Pt nanoparticles induced by surface-oxide formation", Physical Chemistry Chemical Physics, vol. 15, no. 7, pp. 2268, 2013. Royal Society of Chemistry (RSC).
DOI:10.1039/c2cp44252c
Datei:https://doi.org/10.1039%2Fc2cp44252c
455.
W. Wei and T. Jacob, "Strong excitonic effects in the optical properties of graphitic carbon nitride g-C3N4 from first principles", Phys. Rev. B (Editor’s suggestion), vol. 87, pp. 085202, 2013.
DOI:10.1103/PhysRevB.87.085202
Datei:pdf/fileadmin/website_uni_ulm/nawi.inst.080/publikationen/0094_Strong_Excitonic_Effects_PhysRevB_2013.pdf
454.
W. Wei and T. Jacob, "Strong excitonic effects in the optical properties of graphitic carbon nitride$łess$mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"$\greater$$łess$mml:mi$\greater$g$łess$/mml:mi$\greater$$łess$/mml:math$\greater$-C$łess$mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"$\greater$$łess$mml:msub$\greater$$łess$mml:mrow /$\greater$$łess$mml:mn$\greater$3$łess$/mml:mn$\greater$$łess$/mml:msub$\greater$$łess$/mml:math$\greater$N$łess$mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"$\greater$$łess$mml:msub$\greater$$łess$mml:mrow /$\greater$$łess$mml:mn$\greater$4$łess$/mml:mn$\greater$$łess$/mml:msub$\greater$$łess$/mml:math$\greater$from first principles", Physical Review B, vol. 87, no. 8, Feb. 2013. American Physical Society (APS).
DOI:10.1103/physrevb.87.085202
Datei:https://doi.org/10.1103%2Fphysrevb.87.085202
453.
W. Wei and T. Jacob, "Strong many-body effects in silicene-based structures", Physical Review B, vol. 88, no. 4, pp. 045203, Jul. 2013. American Physical Society (APS).
DOI:10.1103/physrevb.88.045203
Datei:https://doi.org/10.1103%2Fphysrevb.88.045203
452.
T. Jacob, J. E. Mueller, H. Hoffmannova, M. Okube, V. Petrykin and P. Krtil, "Surface Stability of Pt3Ni Nanoparticulate Alloy Electrocatalysts in Hydrogen Adsorption", Langmuir, vol. 29, pp. 9046 – 9050, 2013.
DOI:10.1021/la401562t
Datei:pdf/fileadmin/website_uni_ulm/nawi.inst.080/publikationen/0097_Surface_Stability_of_Pt3Ni_Langmuir_2013.pdf
451.
P. Kaghazchi, T. Jacob, W. Chen and R. A. Bartynski, "Theoretical and experimental studies of hydrogen adsorption and desorption on Ir surfaces", Physical Chemistry Chemical Physics, vol. 15, no. 31, pp. 12815, 2013. Royal Society of Chemistry (RSC).
DOI:10.1039/c3cp51769a
Datei:https://doi.org/10.1039%2Fc3cp51769a
450.
"Theoretical Modeling of the Functionalization of Electrode Surfaces with Organic Molecules", Chem. Soc. Rev., 2013.
449.
M. Okube, V. Petrykin, J. E. Mueller, D. Fantauzzi, P. Krtil and T. Jacob, "Topologically Sensitive Surface Segregations of Au-Pd Alloys in Electrocatalytic Hydrogen Evolution", ChemElectroChem, vol. 1, no. 1, pp. 207—212, Dez. 2013. Wiley.
DOI:10.1002/celc.201300112
Datei:https://doi.org/10.1002%2Fcelc.201300112

2012

448.
R. Holze, T. Jacob, S. Schunke, P. Neudecker and D. Willbold, "Elektrochemie: Mehr als Lithiumionenbatterien", Nachrichten aus der Chemie, vol. 60, no. 3, pp. 313—318, Mä. 2012. GdCh — Gesellschaft deutscher Chemiker.
447.
M. Mesgar, P. Kaghazchi, T. Jacob, H. Ibach, N. B. Luque and W. Schmickler, "Chlorine-Enhanced Surface Mobility of Au(100)", ChemPhysChem, vol. 14, no. 1, pp. 233—236, Okt. 2012. Wiley.
DOI:10.1002/cphc.201200621
Datei:https://doi.org/10.1002%2Fcphc.201200621