Signal Theory

Overview

The course "The Signal Theory" will provide a deeper look into stochastic and deterministic signals, in particular their characterization and estimation. Signals with specific structure, in particular topics in sampling and reconstruction and Compressed Sensing are covered.

Contents

Part I: Stochastic Signals

  • Random Variables
  • Estimation
  • Stochastic Processes
  • Mean-Square Estimation and Ergodicity

Part II: Deterministic Signals

  • Sampling and Interpolation
  • Compressed Sensing
Literature

Stochastic Processes / Detection

  • A. Papoulis, S.U. Pillai. Probability, Random Variables and Stochastic Processes. McGraw-Hill, New York, 4th edition, 2002
  • H.L. Van Trees. Detection, Estimation, and Modulation Theory, Part III: Radar-Sonar Signal Processing and Gaussian Signals in Noise. John Wiley & Sons Inc., 2001.
  • R.G. Gallager. Stochastic Prosesses: Theory for Applications. Cambridge University Press, 2013.
  • B. Hajek. Random Prosesses for Engineers. Cambridge University Press, 2015.

Digital Signal Processing / Compressed Sensing

  • M. Vetterli, J. Kovacevic, V.K. Goyal. Foundations of Signal Prosessing. Cambridge University Press, 2014.
  • Y.C. Eldar. Sampling Theory: Beyond Bandlinited Systems. Cambridge University Press, 2015.
  • Y.C. Eldar, G. Kutyniok (editors). Compressed Sensing: Theory and Applications. Cambridge University Press, 2012.
  • K.-D. Kammeyer, K. Kroschel. Digitale Signalverarbeitung: Filterung und Spektralanalyse. Springer Vieweg, 8. Auflage, 2012.
Exercises

Winter Term 2015/2016

Lecture:Tuesday, 08:30 - 10:00,
43.2.104
Exercise:

Monday, 10:00 - 11:30,
43.2.101

Contact

Lecturer:
Prof. Dr.-Ing. Robert Fischer
Supervisor:
Dr.-Ing. Vahid Forutan

Language

 English

Requirements

Signals and Systems
Engineering Mathematics

Weitere Informationen

Hours per Week:  2V + 2Ü
6 ECTS Credits
LSF ENGC 7050