Titel: Ausgewählte Themen in Verteilten Systemen
Englischer Titel: Selected Topics in Distributed Systems
Typ: Seminar, Modul
Kürzel / Nr. / Modulnr.: ATVS / CS5900.113 / 72041
SWS / LP: 2S / 4LP
Dozent: Prof. Dr. Frank Kargl, Prof. Dr.-Ing. Franz J. Hauck
Betreuungspersonen: Leonard Bradatsch, Alexander Heß, Echo Meißner, Migena YmerajNataša Trkulja, Artur Hermman, Externe
Termine: Einführungsveranstaltung
Begleitveranstaltungen für Seminare
Vortragsblocktermin (ganztägig)
Räume und Daten siehe Moodlekurs.
Lernplattform: Kursmaterialien finden Sie im Moodle-Kurs. Sie werden dem Kurs automatisch zum Semesterstart hinzugefügt, sobald Sie eines unserer Seminare besuchen.
Themenvergabe: Bitte Beachten: Die zentrale Themenvergabe erfolgt immer bereits gegen Ende des vorherigen Semesters über die zentrale Seminarthemen-Vergabe-Plattform im Moodle ("Anmeldung zur Verteilung der Seminare im kommenden Sommer-/ Wintersemester").
Sprache: Alle Themen können in deutscher oder englischer Sprache bearbeitet werden, sofern nicht anders angegeben.

Themen

Multi-factor Authentication and WebAuthn  – English only

Multi-factor authentication is a part of modern authentication architectures where a user has to present more than one type of evidence to authenticate themselves. In recent years, this has also become commonplace for web applications, and in the case of online banking, has even been mandated by law. Using multiple authentication factors can significantly improve security, as weak or stolen passwords are the most common way user accounts are compromised. Common implementations of additional factors include generated one-time passwords via mobile apps (e.g., Google Authenticator), biometric data (e.g., smartphone fingerprint sensors), and hardware tokens (e.g., YubiKey). Recently the world wide web consortium standardized the WebAuthn standard to provide a standardized authentication interface within web applications. This seminar should explore the authentication design space and explore the authentication paths that the Web Authentication standard provides.

Echo Meißner

Zero-knowledge Proofs – English only

In cryptography zero-knowledge proofs are protocols for two parties where on party can proof a statement to a verifying party without revealing additional information to the verifier except that the statement is true. This cryptographic building block is used within a variety of applications and other cryptographic protocols, such as authentication, distributed ledgers, and online voting. This topic should introduce zero-knowledge proofs and provide an overview of different types of zero-knowledge proofs as well as how proofs for different statements can be constructed.

Echo Meißner

Secure In-Vehicle Communication – English only

Modern vehicles contain many ECUs that are responsible for various functionalities of the vehicle. These ECUs are interconnected with each other through bus communication systems. Such in-vehicle networks have access to crucial components of the vehicle, such as breaks or airbags. Assuring the integrity and authenticity of in-vehicle communication is therefore critical to safety. In this seminar, an overview of in-vehicle communication systems will be provided. In addition, possible attacks on in-vehicle networks and possible countermeasures / security mechanisms will be described.

Artur Hermann

Opportunities and challenges of vehicular edge computing – English only

Many vehicular applications, such as autonomous driving, will require a lot of computing and storage capacities in the future. In addition, these applications will have stringent performance requirements in terms of response time and network bandwidth. One way to meet these requirements is vehicle edge computing, which places computing and storage capacity at the edge of the network. This offers many opportunities. On the other hand, it also results in many challenges. In this seminar, these opportunities and challenges of vehicular edge computing will be identified and possible solutions will be described.

Artur Hermann

Network Security Breaches – English only

The goal of this seminar is the outlining of popular network security breaches (1-3 examples). Subsequently, state-of-the-art protection or detection approaches against these presented breaches should be explained.

Leonard Bradatsch

Perimeter Security and why it is no longer sufficient – English only

Perimeter security is still the dominant network security architecture in 2022. In this paper, the basic principle of perimeter security will be presented. Above all, however, the weak points are to be pointed out.

Leonard Bradatsch

Automotive Cybersecurity – English only

The goal of this seminar paper is to conduct a survey of the latest cybersecurity attacks in the automotive domain while explaining the functionality of each attack and its effectiveness. In addition, the paper should explore any defense mechanisms implemented to protect against these attacks.

Natasa Trkulja

The Edge of Artificial Intelligence – English only

This seminar paper is meant to explore the limits that the field of artificial intelligence had reached in terms of computer vision (seeing), speech recognition (hearing), chat and voicebots (speaking), and machine learning (analyzing and predicting). How close/far are the capabilities of artificial intelligence to those of humans?

Natasa Trkulja

Trust in Computing – English only

The goal of this seminar paper is to first investigate how trust is defined in computing systems and what some of the properties of this trust are. Secondly, the paper should explore different mechanisms of establishing trust in such systems. Finally, the paper should analyze and compare various mathematical methods for assessing levels of trust between any two computing devices.

Natasa Trkulja

(Topic still available, contact B. Erb if interested) Privacy-preserving Machine Learning in healthcare domain – English only

Hospitals, other public institutions or companies are using medical information to perform computations and use the results for their own analysis. However, the data being collected or shared, might be sensitive and leak critical information about the data source. Therefore, Privacy-Preserving Machine Learning (PPML) plays an essential role, enabling machine learning process without compromising the private data. The goal of this seminar is to give an overview of PPML approaches applied in the healthcare domain, while explaining their role in protecting health data.

Migena Ymeraj

(Topic still available, contact B. Erb if interested) Federated Learning – English only

Federated Learning (FL) is a privacy-preserving machine learning technique, enabling parties to train their own model, using their own data on the device. An important aspect of FL is that this data never leaves the device. Your task in this seminar is to investigate the role of FL in supporting privacy-sensitive applications, while analyzing its advantages and core challenges.

Migena Ymeraj

Distributed Machine Learning – English only

Due to the poor scalability and efficiency of learning algorithms, Machine Learning cannot handle large-scale data. This issue gave rise to Distributed Machine Learning. Even though it is a promising line of research, it still faces a lot of challenges. The goal of this seminar is to discover the importance of Distributed Machine Learning, while comparing it with traditional Machine Learning environments and investigating its challenges.

Migena Ymeraj

Secure Multi-Party Computation – English only

The goal of Secure Multi-Party Computation (MPC) is to enable parties to work together without ever knowing one another's confidential information. It plays an important role in solving security and privacy issues and there are many examples of where it can be helpful. The aim of this seminar is to investigate MPC with respect to both theoretical and practical aspects.

Migena Ymeraj

Hacking the Switch Console – English only

The first version of the Switch had a structural flaw which made it possible to hack the device and gain root control withouth Nintendo being able to patch it via a software update. The only solution was a change in the hardware. In this seminar you describe the attack in detail, how it was fixed and give a statement if this kind of attack is possible in other (older) consoles. Additionally you describe the area of hacking consoles in general.

Michael Wolf (Mercedes-Benz Tech Innovation)

Feasibility of real-world evasion attacks against machine learning for image recognition – English only

This seminar topic shall compare existing machine learning evasion attacks on image recognition models to estimate their feasibility under the assumption of a limited attacker. Thus, the most recent attacks that propose to work with a physical patch or object–forged to manipulate the recognition outcome without direct access to the software or hardware (e. g., digital camera image)–should be identified from literature. A selection of three of these attacks should be compared with each other with focus on the qualitative discussion how likely the attack may be a threat to a deployed cyber physical system.

Stephan Kleber (Mercedes-Benz Tech Innovation)

Consensus in Distributed Data Stores – English only

Distributed data stores are able to provide fault tolerance by distributing the stored data over multiple nodes. Hereby, it is important to ensure consistency among those nodes if write-operations are performed. These operations have to be propagated and ordered on all nodes, which is typically achieved with the use of a consensus protocol. The task of this seminar is to provide insights into the internal consensus mechanisms of different distributed data stores such as etcd, Zookeeper or LogDevice.

Alexander Heß

(Topic still available, contact B. Erb if interested) The FLP Impossibility in Practice – English only

The FLP theorem has been named after its contributing authors Fischer, Lynch, and Paterson. It states that it is impossible to deterministically reach consensus in an asynchronous system in case there is a single faulty node. This theorem has been proposed and proven multiple decades ago and yet, a large number of different consensus protocols were introduced in the meantime that seem to solve the problem in practice. The task of this seminar is to provide a comprehensible introduction to the impossibility theorem, and discuss its implications in practice.

Alexander Heß

TPMs in Cloud Computing – English only

A Trusted Platform Module is a cryptographic coprocessor that provides secure key storage and a variety of cryptographic functionality. Although these modules have already been embedded in a variety of laptops and desktop computers over the last decade, their presence remained quite unnoticed up until the introduction of Windows 11. However, TPMs are in extensive use in the cloud computing domain for quite a while now. The task of this seminar is to provide an overview of the TPM functionality set and its use in state-of-the-art cloud computing infrastructure.

Alexander Heß

Request-level deterministic execution: an overview – English only

For fault-tolerant services, e.g. replicated state machines, a deterministic execution is required. Sequential execution combined with the same input in all replicas is a simple but inefficient way to do so. Request-level approaches need knowledge about conflicting and non-conflicting requests, and execute conflicting requests sequentially whereas non-conflicting concurrently. The seminar student is supposed to give an overview over the various existing request-level approaches and their pros and cons.

Franz J. Hauck

Github Copilot and others: AI techniques for automatic code generation – English only

AI models are already used to support software development by generating code snippets from paraphrased task descriptions. The seminar student is supposed to investigate current and practically available approaches, focus on the most interesting tools, and introduce their capabilities based on examples. The investigation part is also expected to include personal and practical trials of the tools. The seminar report could also contain own conclusions from experiences with the tools. The scope of the seminar work is also to show current limits and to compare features.

Franz J. Hauck

Sorted by Topics

  • Artificial Intelligence
    • The Edge of Artificial Intelligence
    • Github Copilot and others: AI techniques for automatic code generation
  • Automotive Computing and Automotive Security
    • Automotive Cybersecurity
    • Secure In-Vehicle Communication
    • Opportunities and challenges of vehicular edge computing
  • Cloud & Web
    • Consensus in Distributed Data Stores
    • TPMs in Cloud Computing
    • Request-level deterministic execution: an overview
    • Multi-factor Authentication and WebAuthn
  • IT Security
    • Network Security Breaches
    • Perimeter Security and why it is no longer sufficient
    • Hacking the Switch Console
  • Machine Learning
    • Distributed Machine Learning
    • Federated Learning
    • Privacy-preserving Machine Learning in healthcare domain
    • Feasibility of real-world evasion attacks against machine learning for image recognition
  • Theoretical Aspepcts of Security, Privacy and Distributed Systems
    • Trust in Computing
    • Secure Multi-Party Computation
    • Zero-knowledge Proofs
    • The FLP Impossibility in Practice

Beschreibung und allgemeine Angaben, Modulbeschreibung

Einordnung in die Studiengänge:
Informatik, B.Sc.: Seminar
Medieninformatik, B.Sc.: Seminar
Software-Engineering, B.Sc.: Seminar
(siehe auch unsere Hinweise zu Seminaren)
Lehr- und Lernformen: Ausgewählte Themen in Verteilten Systemen, 2S, 4LP
Modulkoordinator: Prof. Dr. Frank Kargl
Unterrichtssprache: Deutsch
Turnus / Dauer: jedes Semester / ein volles Semester
Voraussetzungen (inhaltlich): Grundlagen der Rechnernetze, Proseminar
Voraussetzungen (formal): -
Grundlage für (inhaltlich): -

Lernziel:

Studierende vertiefen exemplarisch an einem Teilgebiet der Informatik ihre Kenntnisse im selbstständigen Arbeiten mit wissenschaftlicher Literatur sowie im mündlichen und schriftlichen Präsentieren von fachwissenschaftlichen Inhalten. In Diskussionen wird die Fähigkeit zur kritischen Reflektion geübt. Im fachlichen Teil des Seminars stehen aktuelle Themen der Verteilten Systeme im Fokus. Abhängig vom Thema lernen Studierende ein konkretes System oder ein Konzept Verteilter Systeme kennen. Sie können diese Systeme in einen größeren Kontext einordnen und deren Vor- und Nachteile selbständig ableiten.

Inhalt:

Zu Beginn des Seminars werden Themen des wissenschaftlichen Arbeitens (z.B. Literaturrecherche, Schreiben einer Publikation, Präsentationstechniken) eingeführt, um den Studenten eine methodische Hilfestellung zu geben. Die Erstellung der eigentlichen Ausarbeitung und Präsentation erfolgt in individueller Betreuung. Die Ergebnisse werden in einer Abschlusspräsentation vorgestellt.

Literatur:

Wird je nach Thema zu Beginn der Veranstaltung bekannt gegeben

Bewertungsmethode:

FSPO < 2017: Leistungsnachweis über erfolgreiche Teilnahme. Diese umfasst Anwesenheit und enthält Ausarbeitung, Vortrag und Mitarbeit.
FSPO ≥ 2017: Die Vergabe der Leistungspunkte für das Modul erfolgt aufgrund der regelmäßigen Teilnahme, der vollständigen Bearbeitung eines übernommenen Themas (Vortrag und schriftliche Ausarbeitung) sowie der Beteiligung an der Diskussion. Die genauen Modalitäten werden zu Beginn der Veranstaltung bekannt gegeben. Die Anmeldung zur Prüfung setzt keinen Leistungsnachweis voraus.

Notenbildung:

FSPO < 2017: unbenotet
FSPO ≥ 2017: Die Modulnote entspricht dem Ergebnis der Modulprüfung. Die Note der Modulprüfung ergibt sich aus den Noten der Ausarbeitung (40%), der Präsentation (40%) und der Arbeitsweise (20%). Im Transcript of Records wird die errechnete Note für die Modulprüfung als eine Prüfungsleistung eingetragen und ausgewiesen.

Arbeitsaufwand:

Präsenzzeit: 30 h
Vor- und Nachbereitung: 90 h
Summe: 120 h