Quantum Information and Entanglement Theory

Controlled quantum dynamics is concerned with the preparation, control, read-out, and verification of composite quantum systems. This raises considerable experimental challenges but also leads us, quite naturally, to questions concerning the mathematical structure of states, dynamics and correlations in composite quantum systems.
What are for example the most suitable mathematical structures for the description of the states and evolution of composite quantum systems or quantum many-body systems? Can we make use of this knowledge to efficiently learn the state of a many-body system?

  • Efficient quantum state tomography, M. Cramer, M.B. Plenio, S.T. Flammia, R. Somma, D. Gross, S.D. Bartlett, O. Landon-Cardinal, D. Poulin, and Y.-K. Liu, Nat. Commun. 1, 149 (2010).

How efficiently can we manipulate quantum states under constrained sets of operations? Is there a quantitative theory of quantum correlations a.k.a. entanglement and how is it related for example to thermodynamics and statistical mechanics?

Can we infer properties of many-body quantum states (such as entanglement) without making unproven assumptions and taking into account that experimentally available measurements are often quite constrained by experimental requirements?

If we wish to determine the properties of quantum states then we need to use detectors and other quantum devices. In the quantum domain these devices are complex themselves and we need to find efficient methods to characterize them. And this task, quantum detector tomography, needs to be achieved with the least experimental effort.

Our group explores all of the above questions, and some more, within the framework of entanglement theory. This work provides the technical and conceptual underpinning for many research problems that we are pursuing in this group.

Most Recent Papers

Enhancing Gravitational Interaction between Quantum Systems by a Massive Mediator, Phys. Rev. Lett. 128, 110401 (2022)

Optimizing quantum codes with an application to the loss channel with partial erasure information, Quantum 6, 667 (2022)

On the Significance of Interferometric Revivals for the Fundamental Description of Gravity, Universe, 8, 58 (2022)

Design Principles for Long-Range Energy Transfer at Room Temperature, Phys. Rev. X 11, 041003



Ulm University
Institute of Theoretical Physics
Albert-Einstein-Allee 11
D - 89069 Ulm

Tel: ++49 / 731 / 50 - 22911
Fax: ++49 / 731 / 50 - 22924

Office: Building M26, room 4117

Click here if you are interested in applying to the group