Unser Institut beschäftigt sich mit einem breiten Themenspektrum wie Skalierbarkeit, Zuverlässigkeit, Sicherheit und Datenschutz, Selbstorganisation und Beherrschbarkeit von Komplexität in Verteilten Systemen in einer Vielzahl von Einsatzszenarien wie Cloud-Computing oder Fahrzeug-Fahrzeug-Kommunikation.


In der Lehre decken wir das gesamte Spektrum von Rechnernetzen, über verteilte Systeme bis hin zu Sicherheit und Privacy-Schutz ab. Unsere noch offenen Abschlussarbeiten und Projektarbeiten finden Sie auf den entsprechenden Webseiten. Für Prüfungen beachten Sie bitte unsere Hinweise.

Soziale Medien

Unsere letzten Publikationen

Mehdi, M., Hauck, F.J., Pryss, R. and Schlee, W. 2024. Mobile health solutions for Tinnitus. Textbook on Tinnitus (Mar. 2024), 723–738.
Modern mobile devices are mainstream and ubiquitous devices. The widespread adoption of mobile devices has resulted in surge of mobile applications (apps) hosted on marketplaces (app stores) of several mobile platforms. Besides other benefits, these apps are also applied in healthcare-related and medical use, for instance, in case of tinnitus, where tinnitus disorder is associated with the perception of ringing sound without external sound source. In particular, for tinnitus, these apps allow provision of tinnitus-related relief, self-help, and general management. The collective aim of this chapter is to foster and report on Mobile Health (mHealth) solutions, in particular mobile apps within the tinnitus context. First, this chapter provides an up-to-date overview of existing mHealth apps available for major mobile platforms. Second, this chapter provides deep insights into quality and effectiveness of said mobile apps for tinnitus treatment and management. Finally, this chapter provides discussions in relation to the tinnitus-related mHealth apps.
Hauck, F.J. and Heß, A. 2024. Linearizability and state-machine replication. Workshop on Resilient Oper. - Byz. Fault Tol. and State-Machine Repl. – ROBUST (Mar. 2024).
Heß, A. and Hauck, F.J. 2024. A framework for consensus-agnostic state-machine replication based on threshold signatures. Workshop on Resilient Oper. - Byz. Fault Tol. and State-Machine Repl. – ROBUST (Mar. 2024).
Volpert, S., Erb, B., Eisenhart, G., Seybold, D., Wesner, S. and Domaschka, J. 2023. A Methodology and Framework to Determine the Isolation Capabilities of Virtualisation Technologies. Proceedings of the 2023 ACM/SPEC International Conference on Performance Engineering (Coimbra, Portugal, Apr. 2023), 149–160.
The capability to isolate system resources is an essential characteristic of virtualisation technologies and is therefore important for research and industry alike. It allows the co-location of experiments and workloads, the partitioning of system resources and enables multi-tenant business models such as cloud computing. Poor isolation among tenants bears the risk of noisy-neighbour and contention effects which negatively impacts all of those use-cases. These effects describe the negative impact of one tenant onto another by utilising shared resources. Both industry and research provide many different concepts and technologies to realise isolation. Yet, the isolation capabilities of all these different approaches are not well understood; nor is there an established way to measure the quality of their isolation capabilities. Such an understanding, however, is of uttermost importance in practice to elaborately decide on a suited implementation. Hence, in this work, we present a novel methodology to measure the isolation capabilities of virtualisation technologies for system resources, that fulfils all requirements to benchmarking including reliability. It relies on an immutable approach, based on Experiment-as-Code. The complete process holistically includes everything from bare metal resource provisioning to the actual experiment enactment.The results determined by this methodology help in the decision for a virtualisation technology regarding its capability to isolate given resources. Such results are presented here as a closing example in order to validate the proposed methodology.
Köstler, J., Reiser, H.P., Hauck, F.J. and Habiger, G. 2023. Fluidity: location-awareness in replicated state machines. 38th ACM/SIGAPP Symp. on Appl. Comp. – SAC (Mar. 2023).
In planetary-scale replication systems, the overall response delay is greatly influenced by the geographical distances between client and server nodes. Current systems define the replica locations statically during startup time. However, the selected locations might be suboptimal for the clients, and the client request origin distribution may change over time, so a different replica placement may provide lower overall request latencies. In this work, we propose a locationaware replicated state machine that is able to adapt the geographic location of its replicas dynamically during runtime to locations geographically closer to client request origins. Our prototype is able to observe emerging optimization potentials and to reduce the overall request latency for the majority of clients by adapting its replica locations to the time-dependent optimum placement during real-world use case evaluations, whereby the absolute performance gain is dependent on the respective usage scenario.

Klicken Sie hier um eine Übersicht aller Publikationen zu erhalten.

Ältere News finden Sie im Archiv.



Marion Köhler
Lysha Lewis
Email-Adresse Sekretariat
Telefon: +49 731 50-24140
Telefax: +49 731 50-24142


Institut für Verteilte Systeme
Universität Ulm
Albert-Einstein-Allee 11
89081 Ulm


Gebäude O27, Raum 349
89081 Ulm
Montag, Mittwoch und Donnerstag ganztags
Dienstag und Freitag nur vormittags besetzt.