Forschung

Unser Institut beschäftigt sich mit einem breiten Themenspektrum wie Skalierbarkeit, Zuverlässigkeit, Sicherheit und Datenschutz, Selbstorganisation und Beherrschbarkeit von Komplexität in Verteilten Systemen in einer Vielzahl von Einsatzszenarien wie Cloud-Computing oder Fahrzeug-Fahrzeug-Kommunikation.

Lehre

In der Lehre decken wir das gesamte Spektrum von Rechnernetzen, über verteilte Systeme bis hin zu Sicherheit und Privacy-Schutz ab. Unsere noch offenen Abschlussarbeiten und Projektarbeiten finden Sie auf den entsprechenden Webseiten. Für Prüfungen beachten Sie bitte unsere Hinweise.

Soziale Medien

Unsere letzten Publikationen

Hermann, A., Trkulja, N., Eisermann, D., Erb, B. and Kargl, F. 2025. Hyperparameter Optimization-Based Trust Quantification for Misbehavior Detection Systems. 2025 IEEE International Conference on Intelligent Transportation Systems (Nov. 2025). [accepted for publication]
Vehicular communication via V2X networks significantly improves road safety, but is vulnerable to data manipulation, which can lead to serious incidents. To address this threat, misbehavior detection systems (MBDs) have been developed to detect such misbehavior. In order to enhance the detection of data manipulation, trust assessment in V2X networks has recently gained increasing attention. Trust assessment takes into account the output of various security mechanisms such as MBDs or Intrusion Detection Systems (IDSs) to detect misbehavior. One particular challenge in trust assessment is the appropriate quantification of the output of these security mechanisms into trust opinions. In this paper, we propose a trust quantification methodology that transforms the output of an MBD into a subjective logic opinion. Furthermore, we apply a hyperparameter optimization approach to determine the optimal parameter set for an MBD. Our evaluation using three MBD variants shows that the optimization approach significantly increased the detection-performance of all MBDs. The MBD variant that used the optimization approach and our proposed trust quantification methodology achieved the best performance, increasing the F1 score by over 13% compared to other state-of-the-art MBD variants analyzed in this work.
Hermann, A., Trkulja, N., Wachter, P., Erb, B. and Kargl, F. 2025. Quantification Methods for Trust in Cooperative Driving. 2025 IEEE Vehicular Networking Conference (Jun. 2025). (acceptance rate: 33%)
Future vehicles and infrastructure will rely on data from external entities such as other vehicles via V2X communication for safety-critical applications. Malicious manipulation of this data can lead to safety incidents. Earlier works proposed a trust assessment framework (TAF) to allow a vehicle or infrastructure node to assess whether it can trust the data it received. Using subjective logic, a TAF can calculate trust opinions for the trustworthiness of the data based on different types of evidence obtained from diverse trust sources. One particular challenge in trust assessment is the appropriate quantification of this evidence. In this paper, we introduce different quantification methods that transform evidence into appropriate subjective logic opinions. We suggest quantification methods for different types of evidence: security reports, misbehavior detection reports, intrusion detection system alerts, GNSS spoofing scores, and system integrity reports. Our evaluations in a smart traffic light system scenario show that the TAF detects attacks with an accuracy greater than 96% and intersection throughput increased by 42% while maintaining safety and security, when using our proposed quantification methods.
Hermann, A., Trkulja, N., Meißner, E., Erb, B. and Kargl, F. 2025. Demo: Quantifying Trust in a Trust Assessment Framework. 2025 IEEE Vehicular Networking Conference (Jun. 2025).
Vehicular communication via V2X networks increases road safety, but is vulnerable to data manipulation which can lead to serious incidents. Existing security systems, such as misbehavior detection systems, have limitations in detecting and mitigating such threats. To address these challenges, we have implemented a software prototype of a Trust Assessment Framework (TAF) that assesses the trustworthiness of received V2X data by integrating evidence from multiple trust sources. This interactive demonstration illustrates the quantification of trust for a smart traffic light system application. We demonstrate the impact of varying evidence coming from a misbehavior detection system and a security report generator on the trust assessment process. We also showcase internal processing steps within our TAF when receiving new evidence, up to and including the eventual decision making on the trustworthiness of the received V2X data.
Trkulja, N., Hermann, Meißner, E., Buchholz, M., Kargl, F. and Erb, B. 2025. Vehicle-to-Everything Trust: Enabling Autonomous Trust Assessment of V2X Data by Vehicles. Proceedings of the 2025 Cyber Security in CarS Workshop (Taipei, Taiwan, 2025). [accepted for publication]
Meißner, E., Kargl, F., Erb, B. and Engelmann, F. 2025. PrePaMS: Privacy-Preserving Participant Management System for Studies with Rewards and Prerequisites. Proceedings on Privacy Enhancing Technologies. 2025, 1 (2025), 632–653. (acceptance rate: 30%)
Taking part in surveys, experiments, and studies is often compensated by rewards to increase the number of participants and encourage attendance. While privacy requirements are usually considered for participation, privacy aspects of the reward procedure are mostly ignored. To this end, we introduce PrePaMS, an efficient participation management system that supports prerequisite checks and participation rewards in a privacy-preserving way. Our system organizes participations with potential (dis-)qualifying dependencies and enables secure reward payoffs. By leveraging a set of proven cryptographic primitives and mechanisms such as anonymous credentials and zero-knowledge proofs, participations are protected so that service providers and organizers cannot derive the identity of participants even within the reward process. In this paper, we have designed and implemented a prototype of PrePaMS to show its effectiveness and evaluated its performance under realistic workloads. PrePaMS covers the information whether subjects have participated in surveys, experiments, or studies. When combined with other secure solutions for the actual data collection within these events, PrePaMS can represent a cornerstone for more privacy-preserving empirical research.

Klicken Sie hier um eine Übersicht aller Publikationen zu erhalten.

Ältere News finden Sie im Archiv.

Kontakt

Sekretariat

Marion Köhler
Email-Adresse Sekretariat
Telefon: +49 731 50-24140
Telefax: +49 731 50-24142

Postanschrift

Institut für Verteilte Systeme
Universität Ulm
Albert-Einstein-Allee 11
89081 Ulm

Besucheranschrift

James-Franck-Ring
Gebäude O27, Raum 349
89081 Ulm

Bürozeiten

Montag bis Donnerstag 07.00 bis 12.00 Uhr
Freitag 07.00 bis 12.00 Uhr nur per E-Mail

Anfahrt