Institut für Verteilte Systeme

Gruppenbild der Mitarbeiter am Institut für Verteilte Systeme mit Herrn Prof. Kargl und Prof. Hauck

Unser Institut beschäftigt sich mit Themen wie Skalierbarkeit, Zuverlässigkeit, Sicherheit und Datenschutz, Selbstorganisation und Beherrschbarkeit von Komplexität in Verteilten Systemen in einer Vielzahl von Einsatzszenarien wie Cloud-Computing oder Fahrzeug-Fahrzeug-Kommunikation.

In der Lehre decken wir das gesamte Spektrum von Rechnernetzen, über verteilte Systeme bis hin zu Sicherheit und Privacy-Schutz ab.

Unsere letzten Publikationen


Meißner, Dominik; Erb, Benjamin; Kargl, Frank
Poster: Performance Engineering in Distributed Event-sourced Systems
Proceedings of the 12th ACM International Conference on Distributed Event-Based Systems
Juni 2018
akzeptiert

Zusammenfassung: Distributed event-sourced systems adopt a fairly new architectural style for data-intensive applications that maintains the full history of the application state. However, the performance implications of such systems are not yet well explored, let alone how the performance of these systems can be improved. A central issue is the lack of systematic performance engineering approaches that take into account the specific characteristics of these systems. To address this problem, we suggest a methodology for performance engineering and performance analysis of distributed event-sourced systems based on specific measurements and subsequent, targeted optimizations. The methodology blends in well into existing software engineering processes and helps developers to identify bottlenecks and to resolve performance issues. Using our structured approach, we improved an existing event-sourced system prototype and increased its performance considerably.

Erb, Benjamin; Meißner, Dominik; Ogger, Ferdinand; Kargl, Frank
Poster: Log Pruning in Distributed Event-sourced Systems
Proceedings of the 12th ACM International Conference on Distributed Event-Based Systems
Juni 2018
akzeptiert

Zusammenfassung: Event sourcing is increasingly used and implemented in event-based systems for maintaining the evolution of application state. However, unbounded event logs are impracticable for many systems, as it is difficult to align scalability requirements and long-term runtime behavior with the corresponding storage requirements. To this end, we explore the design space of log pruning approaches suitable for event-sourced systems. Furthermore, we survey specific log pruning mechanisms for event-sourced logs. In a brief evaluation, we point out the trade-offs when applying pruning to event logs and highlight the applicability of log pruning to event-sourced systems.

Meißner, Dominik
Doctoral Symposium: Towards Time Travel in Distributed Event-sourced Systems
Proceedings of the 12th ACM International Conference on Distributed Event-Based Systems
Juni 2018
akzeptiert

Zusammenfassung: Stateful applications are based on the state they hold and how it changes over time. This history of state changes is usually discarded as the application progresses. By building on concepts from event processing and storing the application history, we envision a novel programming paradigm that supports retroaction. Retroactive computing introduces new opportunities for a developer to access and even modify an application timeline. By enabling the exploration of alternative scenarios, retroactive computing establishes powerful new ways to debug systems and introduces new approaches to solve problems. Initial work has shown the practicality and possibilities of this new programming paradigm and introduces further research questions and challenges.

Schlee, Winfried; Hall, Deborah A.; Canlon, Barbara; Cima, Rilana F. F.; de Kleine, Emile; Hauck, Franz J.; Huber, Alex; Gallus, Silvano; Kleinjung, Tobias; Kypraios, Theodore; Langguth, Berthold; Lopez-Escamez, José A.; Lugo, Alessandra; Meyer, Martin; Mielczarek, Marzena; Norena, Arnau; Pfiffner, Flurin; Pryss, Rüdiger C.; Reichert, Manfred; Requena, Teresa; Schecklmann, Martin; van Dijk, Pim; van de Heyning, Paul; Weisz, Nathan; Cederroth, Christopher R.
Innovations in doctoral training and research on Tinnitus: the European School on Interdisciplinary Tinnitus Research (ESIT) perspective
Frontiers in Aging Neuroscience, 9:447
Januar 2018

Zusammenfassung: Tinnitus is a common medical condition which interfaces many different disciplines, yet it is not a priority for any individual discipline. A change in its scientific understanding and clinical management requires a shift toward multidisciplinary cooperation, not only in research but also in training. The European School for Interdisciplinary Tinnitus research (ESIT) brings together a unique multidisciplinary consortium of clinical practitioners, academic researchers, commercial partners, patient organizations, and public health experts to conduct innovative research and train the next generation of tinnitus researchers. ESIT supports fundamental science and clinical research projects in order to: (1) advancing new treatment solutions for tinnitus, (2) improving existing treatment paradigms, (3) developing innovative research methods, (4) performing genetic studies on, (5) collecting epidemiological data to create new knowledge about prevalence and risk factors, (6) establishing a pan-European data resource. All research projects involve inter-sectoral partnerships through practical training, quite unlike anything that can be offered by any single university alone. Likewise, the postgraduate training curriculum fosters a deep knowledge about tinnitus whilst nurturing transferable competencies in personal qualities and approaches needed to be an effective researcher, knowledge of the standards, requirements and professionalism to do research, and skills to work with others and to ensure the wider impact of research. ESIT is the seed for future generations of creative, entrepreneurial, and innovative researchers, trained to master the upcoming challenges in the tinnitus field, to implement sustained changes in prevention and clinical management of tinnitus, and to shape doctoral education in tinnitus for the future.

Kopp, Henning; Kargl, Frank; Bösch, Christoph; Peter, Andreas
uMine: A Blockchain based on Human Miners
ICICS 2018 aus LNCS
Herausgeber: Springer,
2018
Export als: BibTeX, XML

Klicken Sie hier um eine Übersicht aller Publikationen zu erhalten.