Mathematical Statistics

Statistics deals with the question of how information about a larger whole can be obtained from data sets (samples) using mathematical methods. In this module students should learn about, understand, and apply the fundamentals of the theory of mathematical statistics and become familiar with the most important estimation and test procedures. They should be able to apply the methods in practice, especially with modern software. Furthermore the basis for advanced statistical considerations (especially of a bio- and econometric kind) should be comprehensively learnt and references to other mathematical fields should be recognised and used.

Organiser

Lecturer
Prof Dr Evgeny Spodarev

Assistant
Dr Michael Juhos


Time and place

Lecture
Monday, 10–12, N24 H14
Thursday, 10–12, N24 H12

Exercise
Wednesday, 12–14, N24 H14


Length

Four hours of lecture and two hours of exercises per week.


Prerequisites

  • Elementary probability and statistics,
  • Probability theory and stochastic processes.

Target audience

BachelorMaster
Mathematics (compulsory elective Applied Mathematics)Mathematics (compulsory elective in Applied Mathematics)
Mathematics and Management (compulsory elective Stochastics/Optimisation/Financial Mathematics)Mathematics and Management (compulsory elective Stochastics/Optimisation/Financial Mathematics)
Mathematical Biometry (compulsory elective Stochastics)Mathematical Biometry (compulsory elective Mathematics and Statistics)
 Finance (compulsory elective Mathematics)

Mathematical Statistics (lecture and exercise) runs the whole semester from 13/10/2025; in addition, the first half of the course until 04/12/2025 (lecture and exercise) forms Applied Stochastics II for the bachelor’s programme Computational Science and Engineering and concludes with its own exam.

Contents

  • Parametric model and its fundamentals
  • Exponential families, completeness, sufficiency
  • Methods for (point) estimation of parameters
  • Quality properties of estimators (MSE, bias, consistency, ...)
  • Best unbiassed estimator, Cramer–Rao inequality
  • Tests of statistical hypotheses, relationship between tests and confidence intervals
  • Density estimation or linear models (introductory)

Lecture notes

German version

English version


Exercise sheets

Exercise sheets and further information will be uploaded on the Moodle website.


Written exam

The condition for participation in either exam is passing the prerequisites. For that at least 50% of the exercise points must be achieved.

Exam dates (provisional):

 Mathematics StatisticsApplied Stochastics II
first date23/02/2026 
second date23/03/2026 

Literature

  • H. Dehling, B. Haupt,
    Introduction to Probability Theory and Statistics
    Springer, Berlin, 2003.
     
  • P. Bickel, K. Doksum,
    Mathematical Statistics: Basic Ideas and Selected Topics
    Volume 1. Prentice Hall, London,2nd edition 2001.
     
  • A. A. Borovkov,
    Mathematical Statistics
    Gordon & Breach, 1998.
     
  • G. Casella, R. L. Berger,
    Statistical Inference
    Pacific Grove (CA), Duxbury, 2002.
     
  • E. Cramer, U. Kamps,
    Fundamentals of Probability and Statistics
    Springer, Berlin, 2007.
     
  • P. Dalgaard,
    Introductory Statistics with R
    Springer, Berlin, 2002.
     
  • A. J. Dobson,
    An Introduction to Generalised Linear Models
    Chapmen& Hall, Boca Raton, 2002.
     
  • L. Fahrmeir, T. Kneib, S. Lang,
    Regression. Models, Methods and Applications
    Springer, Berlin, 2007.
     
  • L. Fahrmeir, R. Künstler, I. Pigeot, G. Tutz.
    Statistics. The path to data analysis
    Springer, Berlin, 2001.
     
  • H. O. Georgii,
    Stochastics
    de Gruyter, Berlin, 2002.
     
  • J. Hartung, B. Elpert, K. H. Klösener,
    Statistik. R
    Oldenbourg Verlag, Munich, 9th condition 1993.
     
  • C. C. Heyde, E. Seneta,
    Statisticians of the Centuries
    Springer, Berlin, 2001.
     
  • A. Irle,
    Wahrscheinlichkeitstheorie und Statistik, Grundlagen, Resultate, Anwendungen
    Teubner, 2001.
     
  • I. T. Jolliffe,
    Principal component analysis
    Springer,2nd edition 2002.
     
  • K. R. Koch,
    Parameter Estimation and Hypothesis Testing in Linear Models
    Springer, Berlin, 1999.
     
  • E. L. Lehmann,
    Elements of Large-Sample Theory
    Springer, New York, 1999.
     
  • J. Maindonald, J. Braun,
    Data Analysis and Graphics Using R
    Cambridge University Press, 2003.
     
  • M. Overbeck-Larisch, W. Dolejsky,
    Stochastics with Mathematica
    Vieweg, Braunschweig, 1998.
     
  • H. Pruscha,
    Angewandte Methoden der Mathematischen Statistik
    Teubner, Stuttgart, 2000.
     
  • H. Pruscha,
    Lectures on Mathematical Statistics
    Teubner, Stuttgart, 2000.
     
  • L. Sachs,
    Applied Statistics
    Springer, 2004.
     
  • L. Sachs, J. Hedderich,
    Angewandte Statistik, Methodensammlung mit R
    Springer, Berlin, 2006.
     
  • R. J. Serfling,
    Approximation theorems of mathematical statistics
    Volume 162. John Wiley & Sons, 2009.
     
  • M. R. Spiegel, L. J. Stephens
    Statistics
    McGraw-Hill, 1999.
     
  • V. Spokoiny, T. Dickhaus,
    Basics of modern mathematical statistics
    Springer, 2015.
     
  • W. A. Stahel,
    Statistical Data Analysis
    Vieweg, 1999.
     
  • W. Venables, D. Ripley
    Modern applied statistics with S-PLUS
    Springer,3rd edition 1999.
     
  • L. Wasserman,
    All of Statistics. A Concise Course in Statistical Inference
    Springer, 2004.

Further literature suggestions in the course reserves (Semesterapparate).

Contact

Lecturer

Prof Dr Evgeny Spodarev
Office: Helmholtzstraße 18, Room 1.65
Office hours: by appointment
E-mail: evgeny.spodarev(at)uni-ulm.de
Homepage

Assistant

Dr Michael Juhos
Office: Helmholtzstraße 18, Room 1.41
Office hours: by appointment
E-mail: michael.juhos(at)uni-ulm.de
Homepage

Latest news

  • Deviating from schedule, the first lecture will take place on 13 October, 10:00-12:00, in O27 2207.